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Stars	in	galaxies,	dark	matter	in	the	Universe:	large	ensembles	of	many	
particles	interacting	with	each	other	through	gravitational	force	
	

Microscopic	level:	dynamics	of		an	ensemble	of	particles:	
Eulerian	coordinates	in	phase-space		

Lagrangian	coordinates	in	phase-space:	positions	and	velocities	

Lagrangian	equations	of	motion	

Gravitational	potential	

Phase-space	density:	

with	

Klimontovich	equation:	

Campa,	Dauxois	&	Ruffo	2009,	
Phys.	Rep.	480,	57	
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Macroscopic	level:	average	behaviour	over	many	realisations	
Phase-space	density	is	now	the	result	of	the	ensemble	average	over	the	states	obtained	
from	over	many	initial	conditions	with	a	given	initial	density	probability	

A	given	realisation	is	a	fluctuation	around	the	mean:	

Average	potential:	

First	moment	of	BBGKY	hierarchy	

N	è∞	This	limit	is	not	yet	fully	demonstrated	for	
Gravitational	force	in	3D	!			
(e.g.	Jabin	&	Wang	2017,	Active	Particles,	Volume	1,	379)	

Vlasov	(Collisionless	Bolztmann)	equation	
Hénon	1982,	A&A	114,	211	
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Simulations	techniques	:	the	N-body	approach	
•  System	modelled	by	an	ensemble	of	macro-particles	obeying	
the	Lagrangian	equations	of	motion,	each	of	them	representing	
many	micro-particles:	we	come	back	to	Klimontovich	!	

	
Phase-space	position	(r,u)	
	
•  A	softening	ε	of	the	force	is	introduced	at	small	scales	to	avoid	

catastrophic	behaviour	
	
•  All	the	codes	basically	differ	by	the	way	Poisson	equation	is	
solved	
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Issues:	macroscopic	versus	microscopic	
(beyond	approximations	used	to	speed	up	solving	Poisson	equation	
and	resolve	equations	of	motion)	
	
•  The	true	system	might	follow	closely	the	large-N	limit	(Vlasov)	while	
the	simulated	one	does	not:	this	is	particularly	true	for	dark	matter	

	
•  How	to	disentangle	numerical	instabilities	due	to	N	“not	large	
enough”	from	true	physical	instabilities	in	the	system?	

	
•  What	are	the	consequences	of	modifying	the	actual	interaction	
potential	with	a	softening?	How	large	should	be	the	softening?	

	
•  How	difficult	is	it,	actually,	to	simulate	systems	with	cold	initial	
conditions?	
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108 CHAPITRE 5. LES ÉQUATIONS DE VLASOV-POISSON : APPROCHE NUMÉRIQUE

Figure 5.10, suite, à t = 100. On note dans le panneau en bas à droite la présence d’une zone chaotique due au
bruit blanc des particules. Augmenter le nombre de particules retarde l’apparition de cette instabilité numérique,
qui ne devrait se manifester que sur le plan microscopique et après de nombreux temps dynamiques.
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bruit blanc des particules. Augmenter le nombre de particules retarde l’apparition de cette instabilité numérique,
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Waterbag N-corps

Vlasov	versus	N-body		
Example:	phase-space	of	a	1D	simulation	with	Gaussian	initial	conditions	

“Exact”	solution	with	the	Waterbag	method	
Colombi	&	Touma	(2008,	2014)	

N-body	

holes	

Suspect	resonance	

Nice	«	Landau	damping	»	
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coordinate axes so that no collisions were possible. Obviously,
a collisionless system with only one-dimensional perturbations
should remain one-dimensional. This fact is the basis of our
test; its violation means the code is collisional or that it
otherwise erroneously scatters particle orbits.

We made the test more relevant by tilting the plane of
collapse relative to the simulation cube. We set up a single
perturbation wave k 5 (2, 3, 5)kf(uku 5 6.16kf , where kf is the
fundamental mode) by Fourier transform on a grid of 643

particles. We began with an amplitude d [ (r 2 r̄)/r̄ 1 0.1 and
evolved for an expansion factor of 7.7 after the first shell
crossing, during which collisions are permitted by theory.
While the physical system should have no scattering, near
misses may generate scattering numerically. The role of the
symmetry simply makes scattering detectable. To perform the
comparison we used a PM code (Melott 1981, 1986), a P3M
code (kindly supplied by H. Couchman), and a Tree code
(Suginohara et al. 1991). We also tested a nested-grid particle-
mesh (NGPM) code (Splinter 1996). All runs had identical
(publicly available) initial conditions. The initial conditions for
the NGPM code were generated in the manner described
above for both the coarse and the fine grid. We also made
cross-check runs in which the perturbation k 5 (0, 0, 6)kf was
not tilted with respect to the cube.

The PM run was performed on a 643 mesh and duplicated on
a 1283 mesh to emulate a modification sometimes used, as well
as to verify the code independence of our results. PM tests
were made using traditional two-point differencing and the
Melott (1986) improved–force-resolution staggered-mesh
scheme. There was no significant difference in scattering, as we
report here. We performed otherwise identical P3M and Tree
tolerance parameter u 5 0.2 runs with e 5 0.1 and 1.0, as well
as a transitional P3M run with e 5 0.5. In the P3M code, we
used two choices of time-integration variable and varied the
time step greatly, assuring satisfaction of both Courant and
leapfrog stability conditions. The PM and NGPM codes
automatically test and adjust time steps as needed. The
adaptive smoothing length capability of the P3M code was
turned off, as suggested by Gelb & Bertschinger (1994). The
NGPM code had a refinement factor of 8, putting it close in
spatial resolution to the e 5 0.1 P3M run, but with 512 times
increased mass resolution (making it an HFHMR code).
Results of a much more extended study will be presented
elsewhere.

Figure 1 shows the overall configuration of the PM system
after collapse. All runs look roughly similar. Differences
between tilted runs are shown in Figure 2, in which slices of
one collapsed planar region are projected along the initial
perturbation axis. The only inhomogeneity should be projec-
tion of the initial lattice onto this plane. Some runs show
clumping, suggesting scattering error. All the erroneous
HFLMR runs (the P3M and Tree code runs with e , 1, and the
1283 mesh PM run) share softening lengths shorter than the
mean interparticle separation. The runs that performed well
(normal PM, P3M and Tree with e 5 1, and NGPM) all have
softening comparable to this distance; of course, for NGPM
this distance is considerably smaller, but at no collision
penalty. (Axis-aligned PM and P3M runs show the lattice, with
no clumping visible.)

We use as one quantitative measure the distribution of
particle velocities, which should be strictly normal to the
planes; we separate the velocities into components along the
normal and in the plane, Vplane 5 (V p1

2 1 V p2
2 )1/2. Figure 3 shows

scatter plots for 1000 randomly selected particles from each of
our runs. Many particles are hidden by superposition. The
correct result is a line along the Vnorm axis. This line is
approached only by nonsparse PM and NGPM, by P3M and
Tree as the short-range force is turned off, and by axis-aligned
runs that have only head-on collisions. With e 5 0.1, the most
common choice, the error is large.

The relative error can be made quantitative by comparing
the median speed in the plane to the median speed along the
normal, as shown in Table 1. Another measure is the kinetic
energy; the mean in the plane and along the normal are also
shown in Table 1. Lastly, we show the median value of dplane,
the distance in mesh units by which particles have strayed off
the normal trajectory. All values are the mean or median of
10,000 particles (subgrid particles in NGPM). Our axis-aligned
PM and P3M runs had zero off-normal velocity (within com-
puter precision).

Figure 4 shows a phase-space diagram of a single sheet,
including the normal displacement and velocity, with the other
four phase-space dimensions suppressed. The correct solution
is a spiral (Doroshkevich et al. 1980; Melott 1982a; Bond,
Szalay, & White 1983). The codes that preserve this pattern
are those with softening comparable to the mean interparticle
separation.

We can verify that scattering occurs from encounters, not
from the initial gravity fields, by noting that off-normal com-
ponents are small until shell crossing in all codes; they increase
strongly in the inclined HFLMR codes as particles pass each
other.

3. DISCUSSION

We have shown that HFLMR computational methods in
widespread use for gravitational clustering in cosmology per-
form incorrectly on a simple test problem because they try to
model a continuous system with discrete masses. The PM and
NGPM methods (as normally used) are able to handle this test
because there is no evasion of the discreteness limitation. PM

FIG. 1.—Configuration of particles at the end of our PM simulation. The
other simulations look much the same, except for more inhomogeneity in some
cases.
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can be forced to fail by increasing the lattice resolution beyond
appropriate limits. HFLMR methods work properly if the
short-range force is turned off or if they are forced to align
with the coordinate axes.

Since convergence to the proper behavior is very slow (e.g.,
Hockney 1971), past comparisons by varying particle number
have not revealed this problem (e.g., Efstathiou & Eastwood
1981). Coupling these incorrectly evolved systems to hydrody-
namics will guarantee that the simulation is done in the wrong
background gravitational potential. We do not claim that the
effect occurs on larger scales. Melott & Shandarin (1990), Little,
Weinberg, & Park (1991), and Melott & Shandarin (1993)
have shown that small-scale effects scarcely propagate to large
scales, but more quantitative study is needed. However, errors
would only stop growing in voids or in regions where the
particle density exceeds e23.

Questions may be raised about the relevance of our exam-
ple. Galaxies are not infinite planes. However, the first col-
lapse on any scale is expected to be sheetlike (Shandarin et al.
1995; Kuhlman et al. 1996; Gouda 1996), so there is ample
opportunity for our test situation to arise. Furthermore,
collisionality operates in the absence of symmetry; our planar
collapse study simply makes it starkly obvious. One may argue
that since collapsed pancakes are unstable to small-scale
perturbations, the HFLMR codes model them correctly, jus-

tifying the results they give for small e. On the other hand,
since there is no small-scale power in the initial conditions,
these codes are artificially producing power on small scales by
the growth of shot noise. The results of a simulation should be
a consequence of initial conditions that were imposed. This
point is illustrated in the orientation dependence of the
HFLMR codes. Since we get two completely different results
depending on orientation, one must ask which result is correct.
Most importantly, our results serve to raise the question of
whether a code performs well overall in a complex nonlinear
problem when it cannot replicate a simple test case. As this
Letter was going to press, the authors learned of the work of
Park (1997), in which spherical collapse is studied, producing
conclusions close to ours. Values e 5 0.01 or even smaller are
used in clustering studies.

One might hope that realistic cosmological scenarios with
power on all scales avoid this problem. Impressed perturba-
tions might overwhelm discreteness if the spectrum is normal-
ized to the shot-noise level at the particle Nyquist frequency
(Efstathiou et al. 1985). We tested this possibility by putting in
an inclined plane wave close to the particle Nyquist frequency
at the white-noise amplitude. Again we found strong scattering
in a e 5 0.1 P3M run and essentially none in PM. At this short
wavelength the resolution limitations of PM show themselves

FIG. 2.—A slice of one of the planes from each cube, seen projected along the normal to the plane. The dimensions of the slice are 16 3 16 3 4. To construct the
NGPM slice, a slice of size 4 3 4 3 1 was extracted from the subgrid particles and repeated periodically to produce a slice of size 16 3 16 3 4. This slice was then
sampled to reduce the number of particles to roughly that of the other runs. top row: PM with one particle per cell, PM with one particle per 8 cells (a common
“resolution-increasing” procedure), and NGPM (subgrid). Middle row: P3M with various values of e. Bottom row: Tree code with various values of e, and the correct
result, which was constructed by propagating particles along normals to the plane; the lines come from the tilted projection of the cubic lattice. This projection
represents the standard of comparison for all the codes except NGPM, which shows the correct appearance.

No. 2, 1997 ERROR IN N-BODY SIMULATIONS L81

Melott,	Shandarin,	Splinter	&	Suto	1997,	ApJ	479,	L79	
Melott,	2007	arXiv	0709.0745		
	

Cold	case	and	softening:	single	oblique	sine	wave		

``Correct’’	result	at	the	end	of	the	simulation	

Various	experiments	
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Direct	Vlasov	solvers	
	

Two	cases	have	to	be	considered:	warm	and	cold	
-  Warm,	when	initial	velocity	dispersion	is	non	negligible:	relevant	for	galactic	

dynamics	or	for	warm	dark	matter	such	as	neutrinos	
-  Cold,	when	initial	velocity	dispersion	is	virtually	null,	such	as	in	cold	dark	matter.		
	
Warm	case:	numerous	methods	mainly	invented	for	plasma	physics,	mostly	of	semi-
Lagrangian	nature	(e.g.		Yoshikawa,	Yoshida	&	Umemura	2013,	for	a	recent	application	
in	6D	phase-space).	Among	them:	
-  The	waterbag	method	
-  The	splitting	algorithm	and	its	variants	and	improvements	
-  But	many	others:	hydrodynamic	upwind	schemes,	finite	elements,	etc	
	
Bibliographic	details:	e.g.	Alard	&	Colombi	2005,	Sousbie	&	Scolombi	2016,	Besse	2015:	
http://www.vlasix.org/uploads/Main/Besse.pdf	

Cold	case:	the	phase-space	distribution	is	a	D	dimensional	sheet	moving	in	2D	
dimensional	phase-space.	It	is	represented	by	an	adaptive	tessellation.		
-					Only	2	codes	so	far:		Sousbie	&	Colombi	2016	(ColDICE)	and	Hahn	&	Angulo	2016	
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The	cold	case:	
ColDICE:	a	parallel	Vlasov-Poisson	solver	in	4D/6D	using	

moving	adaptive	simplicial	tessellation	
Sousbie	&	Colombi,	2016,	JCP	321,	644	

See	also	Hahn	&	Angulo	(2016)	(as	well	as	Shandarin	et	al.,	2012,	Abel	et	al.,	2012,	Hahn	et	al.,	2015)	
	

-  In	the	cold	case,	solving	Vlasov-Poisson	equations	can	be	reduced	to	following	the	
evolution	of	a	3-dimensional	sheet	evolving	in	6D	phase-space	(or	a	2-dimensional	
one	in	4D	phase-space)		
		

						Initial	conditions:	

-  The	phase-space	sheet	is	sampled	with	a	self-adaptive	conforming	simplicial	
tessellation	of	which	the	vertices	follow	the	equations	of	motion	

	

-  Poisson	equation	is	solved	on	a	grid	of	fixed	resolution.	The	density	on	this	grid	is	
computed	by	computing	the	intersection	of	the	projected	tessellation	with	the	grid	
with	the	method	of	Franklin	Kankanhalli	(1993,	in	Advances	in	spatial	Databases,	p.	
477)	generalized	to	linear	order	

ColDICE: a parallel Vlasov-Poisson solver using moving adaptive simplicial
tessellation

Thierry Sousbiea,b,c,⇤, Stéphane Colombia

aInstitut d’Astrophysique de Paris, CNRS UMR 7095 and UPMC, 98bis, bd Arago, F-75014 Paris, France
bDepartment of Physics, The University of Tokyo, Tokyo 113-0033, Japan

cResearch Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033, Japan

Abstract

Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution
of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical al-
gorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of
which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-
dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local
representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime.
In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by
measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method
on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the
intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [64, 65, 66]
generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution
of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinu-
soidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check
the parallel scaling of the code.

Keywords: Vlasov-Poisson, Tessellation, Simplicial mesh, refinement, Dark matter, Cosmology

1. Introduction

Stars in galaxies and dark matter in the Universe can be described as a smooth self-gravitating collisionless fluid
following Vlasov-Poisson equations,

@ f
@t
+ u.rr f � rr�.ru f = 0, (1)

�r� = 4⇡G⇢ = 4⇡G
Z

f (r,u, t) du, (2)

where f (r,u, t) represents the phase-space density at position r, velocity u and time t, � is the gravitational potential
and G is the gravitational constant.

In this article, we focus on the cold case, relevant to the dynamics of cold dark matter. In the concordant model of
large scale structure formation [121, 122], the matter content in Universe is indeed dynamically dominated by a cold
and collisionless component, designated by “dark” matter as it does not emit detectable light or radiation. The cold
nature of this component implies that the phase-space distribution function is initially concentrated on a phase-space
sheet: at the macroscopic level, the thickness of the this sheet is virtually null:

f (r,u, t = ti) = ⇢i(r) �D[u � ui(r)], (3)

⇤Corresponding author
Email addresses: tsousbie@gmail.com (Thierry Sousbie), colombi@iap.fr (Stéphane Colombi)
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Abel,	Hahn	&	Kaehler	2012;	Shandarin,	Habib	&	Heitmann	2012;	Hahn,	Abel	&	Kaehler	2013;	
Hahn	&	Angulo	2016;	Sousbie	&	Colombi	2016	

Phase-space	sheet	tessellation:	2D	
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Phase-space	sheet	tessellation:	3D	
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Density sampling from phase-space sheet projection

Exact projected mass in a pixel/voxel
For V a pixel/voxel of a grid:

M (V) =
X

i

Z

Si\V
⇢proj (x) dx

Resolution	of	Poisson	equation:	calculation	of	the	
projected	density	on	a	grid	
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A better density estimate: exact projection

Vol2D =
1
2

X

P

X

e(P)

P.T P.N

Vol3D = �1
6

X

P

X

s=e(P)

X

f (s)

P.T P.N P.B

M0 (V) =
X

⇢0
projVol (V \ S)

Franklin, R. & KankanHalli, M., 1992

A better density estimate: exact projection

Vol2D =
1
2

X

P

X

e(P)

P.T P.N

Vol3D = �1
6

X

P

X

s=e(P)

X

f (s)

P.T P.N P.B

M0 (V) =
X

⇢0
projVol (V \ S)

Franklin, R. & KankanHalli, M., 1992

T1

T0

N0

N1

T0

N0

B0

P P s=e(P)
s=e(P)

f(s)

The	Franklin	&	Kankanhalli	method	(Franklin	1983,	1987;	Franklin	&	Kankanhalli,	1993)		

A better density estimate: exact projection

Mass projection at order 1

M1 (V) =
X

(v,sv,fs)2V

E0
�
⇢0

proj + E1.r⇢1
proj

�

with
⇢

E3D
0 = � 1

6 P.T P.N P.B,
E3D

1 = 1
4 (P.T T + 2P.N N + 3P.B B) .

There are 4 possible contribution types to a voxel:

+ +

(Sousbie	&	Colombi	2016)	Generalization:	
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Test	particles	versus	tessellation	projection	in	a	2D	Plummer	potential	
Image:	T.	Sousbie	(x,y,|v|)	space	
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to create the initial state. Once the initial conditions are set-up, the vertices of the tessellation evolve according to the
Lagrangian equations of motion.

We also consider 4-dimensional phase-space corresponding to D = 2 dimensions in space and 2 dimensions
in velocity. In this case, the phase-space sheet is two-dimensional and is tessellated with triangles; physically, the
system under consideration corresponds to a continuum of infinite lines interacting gravitationally with each other,
with a force proportional to the inverse of the distance between the lines, or in other words to a logarithmic potential
instead of the usual 1/r one in the D = 3 case.

Because of mixing, it is necessary to add sampling elements when needed, i.e. to introduce local refinement on
the tessellation. To do so, we use techniques analogous to finite element methods [see, e.g. 83, 105, 156]: the phase-
space sheet is refined using bisection [see, e.g., 128, 15, 101, 104, 12, 155, and references therein], that is by cutting
when required some simplices into two smaller simplices while preserving the conforming nature of the tessellation
at all times. New vertices created during this procedure are placed in such a way that the local representation of the
phase-space sheet remains accurate at second order. Indeed, because a significant amount of curvature is generated
during the course of dynamics, following locally the shape of the phase-space sheet at second order greatly improves
the quality of the representation of the system and is nearly a must [see also 78].

In order to preserve as well as possible the Hamiltonian nature of the system, the criterion we use to decide when
simplices have to be refined as well as the way they are refined relies on the measurement of local Poincaré invariants,
that is contour integrals of the form

I =
I

u.dr(s) (5)

over closed curves in phase-space composed of points following the equations of motion. In Hamiltonian systems,
such contour integrals must be conserved during motion [see, e.g., 108, 27]: similarly to the waterbag code presented
in [46], our refinement criterion tries to set limits to violations of this property.

To best follow the dynamics, our refinement is anisotropic, which is made possible with the bisection technique.
This is a major di↵erence between our implementation and that of Hahn & Angulo [78] who employ regular refinement
in Lagrangian space, by cutting each tetrahedron into 8 smaller ones. Using anisotropic refinement can be much more
e�cient than regular one if there are preferred directions in the dynamics.

To solve Poisson equation, we project the tessellation onto a regular rectangular grid, by adapting the volume
calculation method of Franklin [65, 66, 67] using raytracing and generalising it to first order, that is with a hypersurface
density represented at linear order inside each simplex. This is another major di↵erence between our algorithm and
that of Hahn of Angulo, who sample each simplex with a set of regularly distributed particles describing the phase-
space sheet shape at second order prior to projection onto the grid. To speed up the process at a small cost in accuracy,
we use an AMR technique in such a way that the size of the mesh elements is locally of the same order of that of the
simplices under consideration. In this sense, our calculation of the intersections is exact at linear order but only at
scales comparable to the size of simplices, while the calculation of Hahn and Angulo is valid up to second order but is
not free of noise due to discreteness e↵ects. Gathering the information on the final fixed resolution grid is performed
by a simple donor cell procedure. Then force calculation and vertex position and velocity updates are performed just
as in standard PM codes.

Because following the evolution of a 3D adaptive tessellation in 6D phase-space remains a very costly exercise,
our code is fully parallel: at the local level, it exploits shared memory parallelism with the OpenMP library, while
distributed memory parallelism is achieved at the coarser level with domain decomposition techniques using the MPI
library.

This article is organised as follows. Section 2 details our parallel implementation of the adaptive simplicial
tessellation, also designated by simplicial mesh. After introducing some terminology (§ 2.1), we describe the parallel
structure of the tessellation (§ 2.2) and how refinement and coarsening are performed (§ 2.3).

Section 3 deals with projection, i.e. with the calculation of the intersection of the tessellation with a rectangular,
possible locally adaptive mesh. After introducing the formalism allowing one to compute integrals of functions inside
polyhedral volumes up to linear order (§ 3.1), our version of the projection algorithm of Franklin is described in § 3.2.
Subtle but nonetheless critical issues related to degenerate cases in the algorithm are discussed and resolved in § 3.3
to enforce its full robustness, while possible accuracy problems in the actual calculation of the intersecting masses are
fixed in § 3.4. Finally, parallelisation is addressed in § 3.5.

4

4.5. Anisotropic refinement
Here, we implement anisotropic mesh refinement based on the generic method presented in section 2.3 (see also

Appendix B). We use measurements of local Poincaré invariants to decide when and how to refine: a refinement
criterion is checked on a per simplex basis (section 4.5.1) and anisotropic refinement is achieved by splitting a carefully
selected edge of the simplex via the introduction of a newly created vertex, resulting in the splitting of all simplices
incident to this edge (section 4.5.2).

4.5.1. Refinement criterion
Hamiltonian systems preserve symplectic two-forms during motion, or equivalently, in integral form, the Poincaré

invariants defined by equation (5) [see, e.g. 108]. This fundamental property can be used to define constraints on the
geometrical set-up of the tessellation mesh. The discrete nature of our phase-space sheet representation in terms of
a simplicial mesh is indeed a source of non-Hamiltonian perturbations. To control these perturbations, a su�cient
sampling of the phase-space sheet has to be maintained at runtime so that the local Poincaré invariants are conserved
to a given accuracy, which serves as a basis to set our per-simplex refinement criterion.

The equivalent of equation (5) can be defined at the microscopic level for any triangle of the tessellation. In this
case, the Poincaré invariant reduces to the symplectic area [see, e.g. 108] defined, for a pair of phase-space vectors
(�zj, �zk) aligned with two sides of the triangle, by

Ī jk ⌘
1
2
�zj

|!�zk, (36)

with ! the symplectic matrix:

! =

 
0 �I
I 0

!
. (37)

One can therefore associate to each simplex Mi an invariant which should, in the ideal case, remain null during motion,

Ii = sup
( j,k)

���Ī jk � Īini
���, (38)

where the sum j, k is performed over the pairs of vectors associated to each triangle of the simplex, that is the triangular
elements themselves in 2D and the tetrahedra facets in 3D, while Īini is a reference value computed in the initial
conditions. Note that in the cosmological case we have Īini = 0 by definition (prior to initial displacement of the
vertices) so we assume from now on Īini = 0 although our refinement scheme can be easily generalised to the case
Īini , 0.

While one could use directly equation (38) to decide when refinement of simplex Mi has to be triggered, a more
subtle approach taking better account of the local anisotropy of the phase-space sheet consists in limiting the maximum
violation of symplecticity that could be obtained after one bisection. To this end, we define a modified invariant Ii,

Ii = sup
j

⇥I0i( j),I00i ( j)
⇤
, (39)

where I0i( j) and I00i ( j) are the invariants associated through equation (38) to the two simplices obtained by splitting
simplex Mi along its jth edge. Refinement of simplex Mi is therefore triggered whenever

Ii > ✏I LxLu, ✏I ⌧ 1, (40)

where Lx and Lu are the typical size of the system in configuration and velocity space, respectively, and ✏I is the
refinement threshold. This latter should be a very small number, e.g. ✏I . 10�6, and values as tiny as ✏I ⇠ 10�10 are
expectable in extreme cases [see, e.g., 46, for detailed analyses in the one-dimensional gravitational dynamical case].
Note that although the tesselation used in the code is defined at quadratic order, we do not evaluate Poincaré invariants
directly over quadratic elements as it would be too costly in terms of performances. Instead, our modified invariant Ii
can be used to measure a loose lower bound on the actual conservation of Poincaré invariants at quadratic order.

One consequence of our choice of refinement is that the deviation from symplecticity is maintained roughly
constant at the simplex level, Ii ⇠ ✏iLxLu. Hence, the cumulated absolute error on the Poincaré invariants due to a
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Refinement:	based	on	measurements	of	Local	Poincaré	invariants	

Poincaré	invariant:		
conserved	along	motion	for	an	Hamiltonian	system	

Local	Poincaré	invariant	
measured	on	a	triangle	

of	the	tessellation	
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Refinement	versus	none	in	a	2D	Plummer	potential	

Image:	T.	Sousbie	

(x,y,|v|)	space	



www.vlasix.org!

Cosmological	warm	dark	matter	simulation	in	3D	(6D	phase-space)	
This	is	the	way	things	would	look	for	CDM	at	very	small	scales	(solar	system	scale)	

The	first	structure	to	form	are	pancakes	

Sousbie	&	
Colombi	2016	

Projected	
density	
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Sousbie	&	Colombi	2016	

(x,y,vx)	subspace	
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Sousbie	&	Colombi	2016	
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•  Highly	simplified	case:	3	sine	waves	(Moutarde	et	al.	1991)	
	
•  Lagrangian	perturbation	theory	(Zeldovich	1970,	Bouchet	et	al.	1992,	Buchert	

1992)	
	
•  High	order	Lagrangian	perturbation	theory	(Zheligovski	&	Frisch	2014,	Rampf	et	al.	

2015,	Matsubara	2015,	Saga,	Taruya	&	Colombi	2018)	
	
•  Quasi	1D	Lagrangian	perturbation	theory	(Rampf	&	Frisch	2017)	
	
•  Post-collapse	perturbation	theory	(Colombi	2014,	Taruya	&	Colombi	2017)	

Dynamics	of	proto-halos	
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2	sine	waves	with	different	amplitudes	
Sousbie	&	Colombi	2016	
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Sousbie	&	
Colombi	
2016	
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Sousbie	&	
Colombi	2016	

(x,y,vx)	space,	
color	vy	
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The	3D	case:	3	sine	waves	with	different	amplitudes	

Colombi	et	al.	
2018	



www.vlasix.org!

The	exquisite	intersection	of	the	phase-space	sheet	with	the	
hyperplane	x=y=0	

Colombi	et	al.	2018	
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Preliminary	comparison	with	N-body	(collaboration	with	S.	Peirani)	

Colombi	et	al.	2018	
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Lagrangian	equations	of	motion	
	

Lagrangian	equations	of	motion	in	the	expanding	Universe:	

Lagrangian	displacement	field:	

a	:	scale	factor	of	the	Universe	
ρm:	average	matter	density	
δ	:	density	contrast	

Divergence:	longitudinal	part:	

Mass	conservation:	

Curl:		transverse	part:	

See	e.g.,	Matsubara	2015	



www.vlasix.org!

Lagrangian	perturbation	theory	
	

Perturbative	expansion:		

Longitudinal:	

Transverse:	

Time	operator:	

Einstein	de	Sitter	:		

Solution	reconstruction:		

See	e.g.,	Matsubara	2015	
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Setup	and	various	PT	approximations	

•  3	sine	waves	in	a	periodic	box:	

•  Quasi	1D	:		|εx	|	>>	|εy|,	|εz|	

(εx,	εy,	εz)=(-24,			-4,			-3)			
																			(-24,	-18,	-12)		
																			(-18,	-18,	-18)		

:	‘’quasi’’	1D	
:	“normal”	
:	‘’Isotropic’’	

•  Full	PT	with	all	the	terms	(including	decaying	modes):	up	to	5th	order	
•  PT	with	only	fastest	growing	modes:	up	to	10th	order	
•  Extrapolation	to	infinite	order	using	results	up	to	10th	order	PT	

1st	and	2nd	order		

aini=0.0005		

Saga,	Taruya	&	Colombi	2018,	arXiv:1805.08787	
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Trying	to	capture	the	structure	at	collapse	in	3D:	high	order	
perturbation	theory	

Perturbation	theory	
calculations	

performed	by	Saga	
and	Taruya	

Colombi	et	al.	2018	
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Perturbation	theory	
calculations	

performed	by	Saga	
and	Taruya	

At	collapse	time:	convergence	of	the	perturbative	series	seems	very	slow	

Colombi	et	al.	2018	
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The	post	collapse	regime…	

Colombi	et	al.	2018	
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After	several	dynamical	times…		

Colombi	et	al.	2018	
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Quasi	1D	case	

Saga,	Taruya	&	Colombi	2018	
arXiv:1805.08787	



www.vlasix.org!

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.4 -0.2  0  0.2  0.4

a = 0.015

v x

x

Zel’dovich
Q1D 2nd

gLPT 10th
Extrapolation

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-0.4 -0.2  0  0.2  0.4

a = 0.025

v x

x

Zel’dovich
Q1D 2nd

gLPT 10th
Extrapolation

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.4 -0.2  0  0.2  0.4

a = 0.029

v x

x

Zel’dovich
Q1D 2nd

gLPT 10th
Extrapolation

“Typical”		case	

(εx,	εy,	εz)=(-24,	-18,	-12)			
Saga,	Taruya	&	Colombi	2018	
arXiv:1805.08787	
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Saga	et	al.	2018,	Colombi	et	al.	2018	
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(εx,	εy,	εz)=(-24,		-4,		-3)			

Quasi	1D	case:	
late	times	

Colombi	et	al.	2018	
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(εx,	εy,	εz)=(-24,		-18,		-12)			

“Typical”	case:	
late	times	

Colombi	et	al.	2018	
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(εx,	εy,	εz)=(-18,		-18,		-18)			

Triaxial	symmetric	
case:	late	times	

Colombi	et	al.	2018	
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Main	runs	on	3072	cores	of	Occigen	(CINES)	(about	90Tb	data	generated)					

Post	analysis	performed	on	Horizon	cluster	of	IAP		

A	few	words	about	the	runs	

Extract	from	a	DARI	
report	by	S.	Colombi	
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Post-collapse	peturbation	theory	
	Colombi	2015,	MNRAS	446,	2902		

Taruya	&	Colombi	2017,	MNRAS	470,	4858	

•  The	main	idea	is	that	at	collapse	time	the	system	presents	a	quasi-1D	structure.		
	
•  In	1D	dynamics,	linear	Lagrangian	perturbation	theory	provides	exact	solution	prior	to	

collapse	time.	It	can	be	used	as	a	first	approximation	of	the	dynamics	just	after	collapse	time.	
	
	
	
•  Correction	to	the	force,	hence	to	the	motion,	is	computed	just	after	collapse	time	assuming	

that	x(Q)	and	v(Q)	are	third	order	polynomials	of	Lagrangian	position	Q,	which	is	correct	
asymptotically.	

	
	
•  Generalization	to	higher	number	of	dimensions	requires	an	accurate	prediction	of	the	system	

at	collapse	time,	but	should	be	analogous	to	the	1D	calculations	if	quasi	1D	regime	is	valid	
	
•  Current	investigations	(with	A.	Taruya	&	S.	Saga):	
-  Higher	order	Lagrangian	perturbation	theory	(following	footsteps	of	Moutarde	et	al.	1991)	
-  Higher	order	Lagrangian	perturbation	theory	in	the	quasi-1D	framework	(following	footsteps	

of	Rampf	&	Frisch	2017)	

6 A. Taruya and S. Colombi

3.3 Corrections to the Zel’dovich flow: basic
post-collapse PT results

Given the explicit expression for the force in the multi-
stream region and using the formal solution given by
Eqs. (17) and (18), we now compute corrections to the
Zel’dovich flow that we write as follows:

�u(Q; ⌧, b⌧c) =
Z ⌧

b⌧c
d⌧ 0 F (x(Q, ⌧

0)), (43)

�x(Q; ⌧, b⌧c) =
Z ⌧

b⌧c
d⌧ 0 �u(Q; ⌧ 0, b⌧c). (44)

We noticed in previous section that, depending on the La-
grangian position of interest, the expression for the force is
di↵erent and we have to divide the domain of the integrals
in Eqs. (43) and (44) into several pieces:

(i) ⌧0  ⌧ < b⌧c(Q): the position Q is located in the single-
valued region (i.e., |Q| > Qc) and the motion is still de-
scribed by the Zel’dovich solution. We have

x(Q; ⌧) = xZel(Q; ⌧) ⌘ q +  (q)D+(⌧), (45)

u(Q; ⌧) = uZel(Q; ⌧) ⌘  (q)
dD+(⌧)

d⌧
. (46)

(ii) b⌧c(Q)  ⌧ < ⌧c(Q): the position Q is in the multi-

valued region and satisfies Qc < |Q|  bQc, i.e. lies in the
outer part of the caustic. In addition to the Zel’dovich flow,
the corrections arising from the multi-stream flow need to
be added and we note them as follows:

x(Q; ⌧) = xZel(Q; b⌧c(Q)) +�xout(Q; ⌧, b⌧c(Q)), (47)

u(Q; ⌧) = uZel(Q; b⌧c(Q)) +�uout(Q; ⌧, b⌧c(Q)). (48)

In this region, which correspond to the tails of the S shape in
Fig. 1, the system is globally expanding in phase space and
gaining energy, at variance with the central part, which on
the contrary, contracts. This can be understood from com-
puting the variation of energy of a typical test particle dur-
ing a fraction of orbit. This phenomenon was studied in the
non-cosmological case by Colombi (2015) and the results
should not be fundamentally di↵erent in the cosmological
case studied here.

(iii) ⌧c(Q)  ⌧ : this corresponds to |Q|  Qc, i.e. the po-
sition Q now lies in the inner part of the multi-stream region
with respect to the caustic. Similarly to the above case, the
backreaction to Zel’dovich flow needs to be computed, in-
cluding at present both the multi-stream dynamics of the
inner part and the incoming flow from the outer part. We
may write

x(Q; ⌧) = xZel(Q; b⌧c(Q)) +�xin(Q; ⌧, b⌧c(Q)), (49)

u(Q; ⌧) = uZel(Q; b⌧c(Q)) +�uin(Q; ⌧, b⌧c(Q)). (50)

Note that the corrections �xin and �uin partly come
from outer part contributions, �xout(Q; ⌧c, b⌧c) and
�uout(Q; ⌧c, b⌧c). As mentioned in the previous point (ii),
in this region, which corresponds to the central part of the
S on Fig. 1, the system is globally contracting and losing
energy in favor of the tails of the S.

In what follows, we compute the backreaction to
Zel’dovich flow and derive the expressions for �x and �u

in each domain. The calculation for the corrected motion
is rather straightforward but needs several steps. Here, we
give a brief sketch of the calculation, deferring details to Ap-
pendix C. The final results are given in Eqs. (52) and (54) for
the outer part, Eqs. (56) and (58) for the inner part, together
with the coe�cients in Tables 1 and 2. Note that although
our expansion is rigorously valid only at third-order in Q,
higher-order contributions will appear in the corrections to
provide a continuous solution, up to fifth- and seventh-order
for the velocity and the position, respectively.

3.3.1 Velocity and position in the outer part:

Qc < |Q|  bQc

In the outer part of the multi-valued region, (ii), the correc-
tion to the velocity can be expressed as

�uout(Q; ⌧, b⌧c) = �
3
2
H

2
0 ⌦m,0

Z ⌧

b⌧c(Q)

d⌧ 0 a(⌧ 0)

⇥

n
J (Q; q0, ⌧

0) + F(q0, ⌧
0)
o
. (51)

In the above, while the first integral is performed with the
help of formulae in Appendix E, the second integral is com-
puted exactly. The whole derivation is provided in Appendix
C1. The resultant expression can be summarized as

�uout(Q; ⌧, b⌧c) = �
3
2
H

2
0 ⌦m,0 a(⌧0)

h
e↵1(⌧)Q+ e�1(⌧)Q3

+ e�1(⌧0)
n
bQ2
c(⌧)�Q

2
o3/2

+ e�1(⌧0)Q5
i
+ e✏1(⌧, b⌧c),

(52)

with the time-dependent coe�cients given in Table 1. Note
that the coe�cient e✏1 implicitly depends on the Lagrangian
position Q through b⌧c(Q) ' ⌧0 + (/8)Q2 but is not Taylor
expanded with respect to Q, for simplicity. A fully analyt-
ical theory, in particular to predict the power spectrum of
the projected density field, would in principle require such
a Taylor expansion. Performing it should not change signifi-
cantly the performances of post-collapse PT as presented in
this article.

Once �uout is obtained, the expression for the correc-
tion �xout is evaluated by further integrating Eq. (52) over
time:

�xout(Q; ⌧, b⌧c) =
Z ⌧

b⌧c(Q)

d⌧ 0 �uout(Q, ⌧
0). (53)

The resultant expression becomes (see Appendix C2 for
derivation):

�xout(Q; ⌧, b⌧c) = �
3
2
H

2
0 ⌦m,0 a(⌧0)

h
e↵2(⌧)Q+ e�2(⌧)Q3

+ e�2(⌧0)
n
bQ2
c(⌧)�Q

2
o5/2

+ e�2(⌧)Q5 + e⇣2(⌧)Q7
i

+ e✏2(⌧, b⌧c), (54)

with the time-dependent coe�cients presented in Table 1.
Note again the dependence on Q of parameter e✏2(⌧, b⌧c)
through b⌧c and the fact that we did not Taylor expand it
in polynomials of Q, as it would be required for a fully an-
alytical theory.

MNRAS 000, 1–27 (2015)
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3.3 Corrections to the Zel’dovich flow: basic
post-collapse PT results

Given the explicit expression for the force in the multi-
stream region and using the formal solution given by
Eqs. (17) and (18), we now compute corrections to the
Zel’dovich flow that we write as follows:

�u(Q; ⌧, b⌧c) =
Z ⌧

b⌧c
d⌧ 0 F (x(Q, ⌧

0)), (43)

�x(Q; ⌧, b⌧c) =
Z ⌧

b⌧c
d⌧ 0 �u(Q; ⌧ 0, b⌧c). (44)

We noticed in previous section that, depending on the La-
grangian position of interest, the expression for the force is
di↵erent and we have to divide the domain of the integrals
in Eqs. (43) and (44) into several pieces:

(i) ⌧0  ⌧ < b⌧c(Q): the position Q is located in the single-
valued region (i.e., |Q| > Qc) and the motion is still de-
scribed by the Zel’dovich solution. We have

x(Q; ⌧) = xZel(Q; ⌧) ⌘ q +  (q)D+(⌧), (45)

u(Q; ⌧) = uZel(Q; ⌧) ⌘  (q)
dD+(⌧)

d⌧
. (46)

(ii) b⌧c(Q)  ⌧ < ⌧c(Q): the position Q is in the multi-

valued region and satisfies Qc < |Q|  bQc, i.e. lies in the
outer part of the caustic. In addition to the Zel’dovich flow,
the corrections arising from the multi-stream flow need to
be added and we note them as follows:

x(Q; ⌧) = xZel(Q; b⌧c(Q)) +�xout(Q; ⌧, b⌧c(Q)), (47)

u(Q; ⌧) = uZel(Q; b⌧c(Q)) +�uout(Q; ⌧, b⌧c(Q)). (48)

In this region, which correspond to the tails of the S shape in
Fig. 1, the system is globally expanding in phase space and
gaining energy, at variance with the central part, which on
the contrary, contracts. This can be understood from com-
puting the variation of energy of a typical test particle dur-
ing a fraction of orbit. This phenomenon was studied in the
non-cosmological case by Colombi (2015) and the results
should not be fundamentally di↵erent in the cosmological
case studied here.

(iii) ⌧c(Q)  ⌧ : this corresponds to |Q|  Qc, i.e. the po-
sition Q now lies in the inner part of the multi-stream region
with respect to the caustic. Similarly to the above case, the
backreaction to Zel’dovich flow needs to be computed, in-
cluding at present both the multi-stream dynamics of the
inner part and the incoming flow from the outer part. We
may write

x(Q; ⌧) = xZel(Q; b⌧c(Q)) +�xin(Q; ⌧, b⌧c(Q)), (49)

u(Q; ⌧) = uZel(Q; b⌧c(Q)) +�uin(Q; ⌧, b⌧c(Q)). (50)

Note that the corrections �xin and �uin partly come
from outer part contributions, �xout(Q; ⌧c, b⌧c) and
�uout(Q; ⌧c, b⌧c). As mentioned in the previous point (ii),
in this region, which corresponds to the central part of the
S on Fig. 1, the system is globally contracting and losing
energy in favor of the tails of the S.

In what follows, we compute the backreaction to
Zel’dovich flow and derive the expressions for �x and �u

in each domain. The calculation for the corrected motion
is rather straightforward but needs several steps. Here, we
give a brief sketch of the calculation, deferring details to Ap-
pendix C. The final results are given in Eqs. (52) and (54) for
the outer part, Eqs. (56) and (58) for the inner part, together
with the coe�cients in Tables 1 and 2. Note that although
our expansion is rigorously valid only at third-order in Q,
higher-order contributions will appear in the corrections to
provide a continuous solution, up to fifth- and seventh-order
for the velocity and the position, respectively.

3.3.1 Velocity and position in the outer part:

Qc < |Q|  bQc

In the outer part of the multi-valued region, (ii), the correc-
tion to the velocity can be expressed as

�uout(Q; ⌧, b⌧c) = �
3
2
H

2
0 ⌦m,0

Z ⌧

b⌧c(Q)

d⌧ 0 a(⌧ 0)

⇥

n
J (Q; q0, ⌧

0) + F(q0, ⌧
0)
o
. (51)

In the above, while the first integral is performed with the
help of formulae in Appendix E, the second integral is com-
puted exactly. The whole derivation is provided in Appendix
C1. The resultant expression can be summarized as

�uout(Q; ⌧, b⌧c) = �
3
2
H

2
0 ⌦m,0 a(⌧0)

h
e↵1(⌧)Q+ e�1(⌧)Q3

+ e�1(⌧0)
n
bQ2
c(⌧)�Q

2
o3/2

+ e�1(⌧0)Q5
i
+ e✏1(⌧, b⌧c),

(52)

with the time-dependent coe�cients given in Table 1. Note
that the coe�cient e✏1 implicitly depends on the Lagrangian
position Q through b⌧c(Q) ' ⌧0 + (/8)Q2 but is not Taylor
expanded with respect to Q, for simplicity. A fully analyt-
ical theory, in particular to predict the power spectrum of
the projected density field, would in principle require such
a Taylor expansion. Performing it should not change signifi-
cantly the performances of post-collapse PT as presented in
this article.

Once �uout is obtained, the expression for the correc-
tion �xout is evaluated by further integrating Eq. (52) over
time:

�xout(Q; ⌧, b⌧c) =
Z ⌧

b⌧c(Q)

d⌧ 0 �uout(Q, ⌧
0). (53)

The resultant expression becomes (see Appendix C2 for
derivation):

�xout(Q; ⌧, b⌧c) = �
3
2
H

2
0 ⌦m,0 a(⌧0)

h
e↵2(⌧)Q+ e�2(⌧)Q3

+ e�2(⌧0)
n
bQ2
c(⌧)�Q

2
o5/2

+ e�2(⌧)Q5 + e⇣2(⌧)Q7
i

+ e✏2(⌧, b⌧c), (54)

with the time-dependent coe�cients presented in Table 1.
Note again the dependence on Q of parameter e✏2(⌧, b⌧c)
through b⌧c and the fact that we did not Taylor expand it
in polynomials of Q, as it would be required for a fully an-
alytical theory.

MNRAS 000, 1–27 (2015)
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Collapse	occurs	at	peaks	of	the	initial	density:		

At	collapse	the	motion	can	be	locally	
expanded	at	third	order	in	the	Lagrangian	
coordinate	

Calculation	of	the	acceleration	is	then	facilitated	
by	the	fact	that	the	multivalued	equation	
x(Q)=x(Q’)	has	simple	solutions	
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Example:	collapse	of	a	single	sine	wave	
Taruya	&	Colombi	2017,	MNRAS	470,	4858	


