Magnetic Reconnection in the

Solar-Terrestrial program

Roch SMETS (LPP),

Nicolas Aunai (LPP),

and a lot more...

AstroSim - Lyon, October 2018

Frozen-in theorem

Let's consider ${\bf K}$ along the magnetic field ${\bf B}$: ${\bf K}\times {\bf B}=0$

For an ideal Ohm's law $\mathbf{E} = -\mathbf{V}_i \times \mathbf{B}$, one can show $d_t(\mathbf{K} \times \mathbf{B}) = 0$

 \rightarrow The magnetic field is frozen in the plasma : they are co-moving together & keep coupled

A particle cannot jump from a magnetic field line to another : no reconnection

deHoffmann-Teller frame

Non-relativistic Lorentz transform : $\mathbf{E}' = \mathbf{E} + \mathbf{V}_{R'/R} \times \mathbf{B}$

One can define $V_{HT} = (\mathbf{E} \times \mathbf{B})/B^2$: In this frame, the (perpendicular) electric field is null, so particle keep gyrate around a same field line through time.

In the HT frame, a magnetic field line is non-moving

For ideal MHD : $V_{HT} = V_{\perp}$ so plasma & magnetic field are frozen one into the other

To allow $d_t(\mathbf{K} \times \mathbf{B}) \neq 0$, one needs $\nabla \times \mathbf{E}_{\parallel} \neq 0$

Reconnexion in ideal MHD ?

In ideal MHD, magnetic connections are conserved, except eventually where $\mathbf{B} = 0$

• Either the electric field is null, so lines of forces do not cross separatrices

 \bullet Or the plasma velocity must be discontinuous, for ${\rm E} \neq$ 0, which is forbidden by its inertia

Reconnection rate : definition

Amount of magnetic flux across a closed surface : $\oint \mathbf{B} \, d\mathbf{s}$ The reconnection rate is the time derivative of this quantity

$$\frac{\partial}{\partial t} \oint \mathbf{B} \, d\mathbf{s}$$

Using Faraday eq. & Stokes theorem, the reconnection rate is $\mathbf{E} = -\partial_t A$

Ohm's law (electron momentum equation)

$$\mathbf{E} = -\mathbf{V}_i \times \mathbf{B} + \frac{1}{qn} \mathbf{J} \times \mathbf{B} + \frac{m}{q} d_t \mathbf{V}_i - \frac{m}{nq^2} d_t \mathbf{J} - \frac{1}{nq} \nabla \mathbf{P}_e + \eta \mathbf{J} - \eta^* \Delta \mathbf{J}$$

(1) : ideal term iscales like V_i/V_A

- (2) : Hall effect scales like kl_p
- (3) : electron inertial effect scales like ω/Ω_e
- (4) : electron inertial effect iscales like $k l_p \omega / \Omega_e$
- (5) : electron compressibility scales like $k \rho_{Le} v_{the} / V_A$
- (6) : resistivity (dissipative term)
- (7) : hyper-viscositA (dissipative... depends on scale)

What if 3D ?

Asks Sophie Masson...

Very large scales phenomenon, needing a MHD description

 \rightarrow Micro-Physics can hardly be considered because of scales discrepencies

 \rightarrow Plasms weakly collisional close to the photosphere

 \rightarrow Bounded problems where boundary conditions are important

• Numerical works are oftenly using resistive MHD

Fast reconnection killed by small Lundqvist nbr ?

In Sweet-Parker model, reconnection rate scales as $S^{-1/2}$: \rightarrow reconnection should be quenched in collisionless media... *Loureiro et al, 2012*

2D reconnection : out-of-plane electric field

- 1. Ideal MHD : $\mathbf{E} = -\mathbf{V}_i \times \mathbf{B}$
- 2. p^+ Diff. region : $\mathbf{E} = (\mathbf{J} \times \mathbf{B})/en$
- 3. e^- Diff. region : $\mathbf{E} = -\nabla \cdot \mathbf{P}_e / en$

 \rightarrow Hall effect governs the reconnection rate

Numerical simulation of plasmas

Self-consistant electromagnetic fields :

B from $\partial_t \mathbf{B} = -\boldsymbol{\nabla} \times \mathbf{E}$ (always)

• in MHD : $\mathbf{E} = -\mathbf{V}_i imes \mathbf{B}$

• in two-fluid & hybrid : complete Ohm's law ($\mu_0 \mathbf{J} = \boldsymbol{\nabla} \times \mathbf{B}$)

• in full-PIC : $c^{-2}\partial_t \mathbf{E} = \nabla \times \mathbf{B} - \mu_0 \mathbf{J}$ (+ Poisson correction)

 \rightarrow So need density and current density from plasma equations (or ion flow in MHD)

- **3** possible approaches
- MHD and 2-fluid : set of fluid equations + closure (need an hypothesis) and eq. on E
- Hybrid : p^+ as macroparticles \rightarrow kinetic effects, e^- as a massless fluid (closure)
- full-PIC : both p^+ & e^- are macroparticles (strong constraints on mass ratio & c/V_A)

 \rightarrow Vlasov codes are unaffordable in 3D...

Set of equations for hybrid models

$$d_{t}\mathbf{x}_{i} = \mathbf{v}_{i}$$

$$d_{t}\mathbf{v}_{i} = \mathbf{E} + \mathbf{v}_{i} \times \mathbf{B} - \eta \mathbf{J}$$

$$\partial_{t}\mathbf{B} = -\nabla \times \mathbf{E}$$

$$\mathbf{J} = \nabla \times \mathbf{B}$$

$$\mathbf{E} = -\mathbf{V}_{p} \times \mathbf{B} + N^{-1}(\mathbf{J} \times \mathbf{B} - \nabla \cdot \mathbf{P}_{e}) + \eta \mathbf{J}$$

$$P_{e} = NT_{e}$$

 \rightarrow Electric field has electrostatic component

- \rightarrow no need of Poisson correction (and Laplacian to invert)
- How to define n and \mathbf{V}_p from collections of \mathbf{x}_i & \mathbf{v}_i

How to manage macro-particles ?

- A macro-particle is representative of a set of particle...
- In a statistically acceptable way (nrb of part per cell)
- A macro-particle has finite size, more or less "diffusive"
- The size of the macro-particle depends on the mesh size
- macro-particles flow one through the other

 \rightarrow Fluid moments depend on assignment function

How to manage macro-particles ?

Shape factor :

S(x) are *b*-splines of order 1, 2, 3... or more ?

$$N(x) = \sum_{\substack{i=0\\ N-1}}^{N-1} S(\mathbf{x} - \mathbf{x}_i)$$
$$\mathbf{V}_p = \sum_{\substack{i=0\\ i=0}}^{N-1} S(\mathbf{x} - \mathbf{x}_i) \mathbf{v}_i / N$$

- \rightarrow Only defined on grid points
- \rightarrow and convolution product for 2- and 3-dimensions

Bounce motion : Aunai et al., 2011

 \rightarrow bounce motion of the ions is associated to the Hall electric field (electrostatic) and not to the magnetic field

Energy budget : Aunai et al., 2011

 \rightarrow Thermal energy is larger than bulk energy (outflow)

Reconnexion mediated by High Power lasers : t=0

When folding targets [Smets et al., 2014]

Initial out-of-plane magnetic field : Quadripolar structure

- \rightarrow Reconnection rate depends on sallient/reverse angle
- \rightarrow 6 shots scheduled on LMJ/PETAL : spring 2019

Reconnected flux

 $\longrightarrow B_Z$ develops prior the reconnection onset (t=16) \longrightarrow Same reconnection rate at each loci (slope of A_Z) \longrightarrow Time lag between the 2 onsets of reconnection

Local X-line orientation : [Aunai et al., 2016]

 \rightarrow Reconnection rate depends on the 2D simulation plane \rightarrow It is maximum in the plane defined by bisector of upstream fields

Coming soon : PHARE

Parallel Hybride code using Adaptive-Mesh-refinement

Developped across LPP & LERMA :

Space plasmas, Lab. astrophysics, ISM...

small team (3 persons) hopefully growing

 \rightarrow aims at being state-of-the-art for Petascale... Exascale 1D version begining of 2019, 2D end of 2019, and then 3D...

Which kind of AMR ?

• It could have been "cell-based" (see P. Kestner & P4est)

 \rightarrow Nice because refined only in the needed cells

 \rightarrow But we have particles to manage...

and self-forces appear for $\partial_t S(x) \neq 0$

• So it is "patch-based"

 \rightarrow refine in a given patch (of given geometry) a (refinement) level is a collection of patches eases the parallelization

What about self-forces ?

Multi-Level-Multi-Domain techniques :

Innocenti et al., 2013

- A corse level existe for the WHOLE simulation domain
- Patches exist at finer levels (with finer particles)
 → the entry flux is dictated by next coarser level
 so a refinement operator exist for BOTH fields & particles
 → the outgoing flux is... outgoing !
- No $\partial_t S(x)$, only fine living patches
- \rightarrow Make sure levels are ''physically coherents''

What else ?

- The electric field coming from Ohm's law,
- no simple leap-frog
- \rightarrow Predictor-Predictor-Corrector scheme *kuntz et al., 2013*
- Yee grid
- Non-relativistic *Boris* pusher (80% of CPU)

 \rightarrow Abstract base classes as interface for various solver, grid, electron closure, *b-spline* order, dimension...

Written in C++17

FOR(mula)TRAN(slation) tuned for numerical operation... Now, most of the code is software engeneering

C++ combines low-level optimized code & high-level abstract code

smart pointers (memory leaks), STL for containers...

of course, data encapsulation, polymorphism, inheritance

Design pattern

"general reusable solution to a commonly occurring problem within a context in software design"

Needed to code factoring, avoid bugs, ease lecture...

Strategy, Factory...

Interpolator for 1, 2, 3D and 1, 2, 3 & 4^{th} order ?

 \rightarrow Bridge

Projet management & Documentation

• Redmine :

provides issues, doc, wiki, Gantt, calendar, forum, files...

• Doxygen :

generate the documentation (for devlopers) automatically from comments in the code

UML diagrams are also included

Unit, integration & validation Tests (GoogleTest)

- Unit tests : aims at testing a "unitary component", basically a method, or a class
- Integration tests : be sure that a whole chain of components is well integrated
- Validation tests :
- functional... a given function is fulfilled
- "solution"... the solution of a given problem is reached
- associated to performance & robustness

 \rightarrow Test driven developement when needed

Version Control System

- RhodeCode : manage repositories "@HOME", with Git or Hg, pull request, forks, gists
- Git : allow diff, reset, blame, diff, stash
- Workflow : uses local branches, repositories like upstream, origin, ...
- pull request : pieces of codes are integrated after peer review
- \rightarrow Agile method, extreme coding...

Continuous Integration

After a commit from contributor :

- clang-analyze & cppcheck
- coding style & documentation
- unit & integration tests
- compilers & libraries (portability)
- push on official repository

 \rightarrow using a local "TeamCity"

A library for AMR : SAMRAI

Developped at LLNL, manage plenty of nice features :

"patch based", dynamic mesh refinement, user defined data, load balancing, interface to solver libraries, visualization support,... & open source ! splitting method for particles : [Smets et al. 2018]

 \rightarrow exact solution... eventually expensive

 \rightarrow approximate solution results from optimisation

Concluding remarks

- Wee need software engineering
- We need collaborations
- We need open source codes
- We need engineer in HPC
- We need money

 \rightarrow But we already have computers...

For each new PhD student...

About the Hall effects

- (Hall) E_{XY} electric field associated to J_Z and B_{XY}
- J_Z grows at the tip of each loops when colliding
- \rightarrow quadrupolar B_Z grows because E_{XY} is no more curl-free
- J_{XY} associated to this out-of-plane magnetic field
- \rightarrow Carried by electrons (protons are demagnetized)

Reconnection Rate

Slope of the reconnected flux : $E_Z = -\partial_t A_Z$ Reach the "holly" value of 0.2...

 \rightarrow The outflow speed is aroud 0.2 times the (upstream) Alfvén speed (not yet normalized)

Out-of-plane quadrupolar (Hall) Magnetic Field

Its value clearly increases prior the reconnection onset \rightarrow Can not be a consequence of the reconnection process Double hump structure like the one of the E_Z component \rightarrow Close connection between these two components

Striped pulsar wind [Bogovalov, A&A 1999]

Ultra-relativistic pair-plasmas ($\gamma \sim 10^3$, $\sigma \sim 10^4$) (collisionless) Shock-driven reconnection

 \rightarrow EM energy to synchrotron emmitting electrons (X & γ)

Accretion disks [Gouveia dal Pino & Lazarian, 2005]

Can explain the steep power-law state of photons for $\beta \leq 1$

 \rightarrow Could be extended to AGNs & YSOs,

γ ray bursts (Fireball model) [Thompson, 1994]

Ultra-relativistic with $\beta \leq 10^{-4} \rightarrow f(\gamma) \propto \gamma^{-p}$ with $p \sim -2.2$ \rightarrow Associated $p \sim -1.6$ for synchrotron photons