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The first billion years and reionisation

-

Ist stars and reionisation

*A neutral and metal-poor Universe becomes ionized and metal-rich

*We know it happened, but not so much how and when, and what sources powered it

*For this non-linear, multi-scale, multi-physics problem, simulations are the best way to gain an
understanding

Credit: Abraham Loeb, Univ. Colorado




What are the sources of reionsiation?

Answer: most likely massive young stars emitting ionising radiation
that leaks out of the inter-stellar medium (ISM) of galaxies

From Robertson et al. (2015)
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Understanding the epoch of reionisation

To understand the complex interplay of galaxy formation, emission,
propagation, and absorption of radiation which leads to reionisation, we
need cosmological simulations

= fesc

= sources of reionisation

= clustering of sources and patchiness of reionisation
= |GM temperature evolution

= interpretation of observations



Two classes of reionisation RHD simulations
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SPHINX in the context of cosmological RHD simulations
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With SPHINX, we can simultaneously s stEeN eMpe

* resolve fesc from thousands of galaxies in one volume
* predict the reionisation history



Radiation hydrodynamics with RAMSES-RT
Rosdahl et al (2013), Rosdahl & Teyssier (2015)
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¢ Moment method for radiation to
reduce the angular dimensions
= unlimited number of sources

* Reduced light-speed to speed up
implicit RT-solver

* Hydro-coupled, parallel
Photons emitted and propagated
on-the-fly, ionising, heating, pushing,
and multi-scattering on the gas

* Publicly available

Joakim Rosdahl



The variable speed of light approximation

The main limitation for performing large-scale reionisation simulations
was that reionisation of cosmological voids happens close to the (real)
speed of light. This is incompatible with the reduced speed-of-light
approach.

We recently overcame this problem with a variable speed of light

approximation, where c is slow in dense gas but speeds up in the
diffuse IGM (see Katz et al, 2017).

Harley Katz

This makes it possible, for the first time, to perform
large-scale reionisation simulations that resolve individual
galaxies.



Computing resources

| applied for PRACE time in 2016 and received | 3.6 million cpu-hours to
perform the Sphinx simulations on the SuperMUC supercomputer in Munich.

The main simulations ran on 5600 cores in ~3 M cHrs each.
Each output is ~200 GB. Total storage is ~40 TB per simulation

“.','. :
mgieatInzItn
101c |




Project goals

e Understand the process and sources of reionisation

e Understand how patchy reionisation and metal
enrichment suppresses or enhances the growth of
satellite galaxies

e Model observational Lyman-alpha sighatures produced
by the various stages and environments during
reionisation

* Predict luminosity function and galaxy distribution at
extreme redshift for the JWST era

* Obtain statistical understanding about UV escape from
the ISM (connection to feedback, halo mass)
* First: What do binary stars have to do with
reionisation? (Rosdahl et al., MNRAS.479..994R)
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SED models

Spectral Energy Distributions for stellar populations

Binary Stars Can Provide the “Missing Photons”’ Needed for
Reionization

Xiangcheng Ma,'x Philip F. Hopkins,! Daniel Kasen,>* Eliot Quataert,” Claude-André
Faucher-Giguere,* Dusan Kere$®> Norman Murray®t and Allison Strom’

* Post-processing pure-hydro zoom simulations, Ma et al. predict 4-10
times boosted fesc (escape of ionising radiation) with a binary
population SED

* The reason: longer and stronger radiation due to mass transfer and
mergers in binary systems
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DS (Spectral Energy Distribution models for stellar populations)
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Sphinx simulations
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5 cMpc box with 10 cMpc box with
high mass resolution lower mass resolution

(but same physical resolution)

...plus many tiny 1.25-2.5 cMpc boxes
for exploration and calibration

13



SPHINX setup

* Physical resolution Ax > |0 pc

* DM mass resolution of 3% 0% M¢ per particle
107 Mo halo has 300 particles > all potential sources resolved.

* Stellar particle resolution of |03 Mo (particle = a stellar population)

* Bursty star formation depends on local virial parameter and mach
number

* Typical local star formation efficiency e« ~ 0.5

* SN explosions modelled with momentum kicks (Kimm et al,, 2015)

* We cdlibrate SN rates to reproduce a realistic SF history
(four times boosted SN rate compared to Kroupa initial mass function)

* No calibration on unresolved fesc (i.e. we inject the SED luminosity)

* We run with binary and single star SEDs
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z = 6 luminosity function
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The agreement with observations is thanks to
e Strong supernova feedback
* Careful selection of initial conditions to minimise cosmic variance
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Reionisation history

binary vs single SEDs

Volume weighted neutral fraction
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Escape fractions for
most massive halo
progenitor in 5 cMpc
volume

fesc for a single halo
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fesc for the full volume
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fesc vs halo mass (with binaries)
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Next ... more PRACE time !

Cosmological
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Summary and future

* The Sphinx simulations are the first fully cosmological RHD
simulations that resolve the ISM of galaxies

* Pilot Sphinx paper in MNRAS (Rosdahl et al., 2018)
e Stellar populations with binary systems really speed up
reionsiation!

* More to follow:
* Observational sighatures of simulated galaxies (w
RASCAS)
* Which galaxies contribute to reionisation
* Suppression of galaxy growth in ionisation bubbles

* And more simulations:
e Larger volume: more galaxies, and more massive
e More physics: what really regulates SFR and fesc ?



