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Some astrophysical motivations

All the stars rotate, and young stars are fast...

We wish to understand

@ the structure, the flows and the atmosphere of a fast rotating
star with a given (initial) chemical composition
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Some astrophysical motivations

All the stars rotate, and young stars are fast...

We wish to understand

@ the structure, the flows and the atmosphere of a fast rotating
star with a given (initial) chemical composition

@ the consequences of fast rotation on the eigenspectrum of
such a star

© the way these stars lose angular momentum and what are the
consequences

© the evolution of rotation during the lifetime of the stars
© the consequences of rotation on abundances

© the relations with magnetic activity

@ the validity of 1D models on the rotation axis

Michel Rieutord Rotating stars in two dimensions



To summarize :

Build self-consistent models to monitor all secular effects of
rotation on stars.
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A timely question

Optical or IR interferometry
VLTI (ESO), NPOI (USA), CHARA (USA) allow a gross imaging of
stars. Examples :
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A timely question

Interferometry

North

East
0
m Arcsec

0
m Arcsec

Ficure — Achernar seen with VLTI (Domiciano de Souza et al. AA, 2003)
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A timely question

Interferometry : Mapping the stellar surfaces

Intensity | (W/m2/nm/srad)

3.75410° 6.31-10° 8.87+10° 1.14-10° 1.40+10°

Ficure — Achernar with VLTI (Domiciano de Souza et al. 2014, AA 569)
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A timely question
Interferometry : Mapping the stellar surfaces
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Fiaure — Vega viewed with NPOI (Peterson et al. Apd 2006), Q ~ 0.93Q3
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A timely question

Interferometry : Mapping the stellar surfaces

Model of a fast-spinning star Actugl image of Altair from the]

HARA Interferometer

~

Equator bulges and
darkens as Star spins faster

2.8 revolutions/day

Fiaure — Altair viewed with CHARA (Monnier et al. 2007).
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A timely question
Interferometry

plus many diameters of A-type stars like
@ « PsA (with a dusty debris disc, planet ?), 8 Leo (a §-Scuti
star), 8 Pic (very young with planets),

a growing series.
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A timely question
Asteroseismology

@ Altair (flatness ~ 20%) is a §-Scuti (Buzasi et al. 2005) just as
Ras Alhague (a Oph)
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A timely question
Asteroseismology

@ Altair (flatness ~ 20%) is a §-Scuti (Buzasi et al. 2005) just as
Ras Alhague (a Oph)

@ CoRoT/KEPLER/WIRE/MOST : They yield a large set of
oscillating fast rotating stars.
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A timely question
Asteroseismology

B! hmm%m " W»W &

v [c/d]

Ficure — Part of the oscillation spectrum of Altair from WIRE (Buzasi et al.
2005).
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e The brief history of 2D models
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The historical steps of 2D-models

@ The pioneers : James (1964) and Roxburgh, Griffith & Sweet
(1965)

The American series : Bodenheimer, Jackson, Mark &
Ostriker (1968-1973)

@ The Canadian series : Clement (1974-1994)

@ The Japanese school : Eriguchi (1978-1997)

@ The German-Japanese school : Eriguchi-Muller (1985-1993)
°

The revival : Roxburgh 2004, Jackson et al. 2005 et Deupree
2011

The French-Spanish series : Rieutord & Espinosa Lara (2005
=)
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The American way

@ Mark & Ostriker 1968 : Rapidly rotating stars. I. The
self-consistent-field method :
The Poisson equation for the potential is solved using the

Green integral :
¢ = _Gf - - d3]"
|r r’l

so that boundary conditions on ¢ are readily met.
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The American series
Stopped in 1973

Models are quite simple (polytropic eos) but face numerous
problems :

@ the code was not flexible,

@ the code did not work with M< 9 Mg,

@ the code could not deal with very fast rotation, large density
contrasts.
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Other attempts
1973-1997

@ Numerical difficulties were plaguing the attempts : solutions
were not precise : virial test =2 10~* (Clement 1973), =4 10~*
(Eriguchi & Muller 1985).

@ Differential rotation was imposed
@ Physics was usually very simplified
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Some exotic configurations
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The revival

@ Roxburgh 2004, 2006 : hydrostatic models with ad hoc
differential rotation for seismology : but no follow up.

@ Jackson, McGregor & Skummanich 2004, 2005 (ApJ, ApJS) :
try to model the results of interferometry on Achernar, but
hydrostatic + adhoc DR.

@ Deupree 2011, ApJ, similar models as above but focus on an
A-star (a-Oph). First, prediction of the SED + tentative
predictions on the eigenspectrum.

@ Rieutord & Espinosa Lara (2005-) head into the dynamics...
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Conclusions

@ Previous attempts show that the problem is tough : Robust
numerics is desired.

@ Differential rotation and meridional circulation need to be
included at the outset.

@ We should reach the state “stellar evolution”
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© The ideal model
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The ideal model
The first step towards multidimensional stellar models

The model should describe an isolated, non-magnetic star, in
a steady state or quasi-steady state.
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The ideal model
Equations

A¢ = 4nGp
oT#- VS = —DivF + &, (1)
PO AT+ 7-VP) = ~VP - pV(¢p - 1025 + F,
Div(p¥) = 0.
= the equations of a steady flow of a compressible, self-gravitating
fluid, with nuclear reactions...
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The ideal model
Equations - 2

Energy flux

F= —,\/,ﬁT -

Xturb T,
WA
R

M

Viscous force

ﬁ‘,:,uﬁ(ﬁ) = ulAV+ ﬁ(ﬁ-?)wLZ(ﬁln,u-ﬁ)ﬁ

1
3

= - 2 - =
+VInpx (VX7 —E(V-V)Vln,u] .

or the prescription of the Reynolds stress tensor.
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The ideal model
Microphysics

k= k(p,T) OPAL ()

P=P@p,T) OPAL
e« =&p,T) NACRE
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The ideal model
Boundary conditions

@ On pressure
Py =

W N
=110a]

@ On velocity
vV-i=0 and ([oc]@)Ai=0

@ On temperature
in-VT+T/Ly =0
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The ideal model
The last touch

The total angular momentum

f rsinfpu,dV = L
W)

or the equatorial velocity

vo(r =R,0 =m/2) = Vgq

Michel Rieutord Rotating stars in two dimensions



@ Numerics
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The numerical side

@ Present evolution codes use less than 10* grid points

@ To keep similar performance a 2D grid should not exceed
10? x 10? suggesting the use of spectral methods.
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@ The shape of the star is unkown and should be derived,
@ On this surface boundary conditions apply.

Coordinates should be adapted to the geometry of the star.
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Mappings

Method : taken from Bonazzola, Gourgoulhon et Marck (1998) :
A transforms the natural coordinates ¢, 6, ¢ into the
spherical coordinates (same topology) :

r={+AQRO) -1, =0, ¢=¢ (3)

where A(¢{) is a polynomial chosen by the user.
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Mappings

Ficure — The mapping.
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Mappings

The natural coordinates are curvilinear and non-orthogonal. The

metric is
2, .2
ga:rﬂa o _ _To
r2r2 r2ry’
Vs ¢
g99 = l v _ 1
r? r2sin% 0
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Spectral : Chebyshev “radially” and spherical harmonics
horizontally :

o= D, &Y

€=0,2,...

Spectral space horizontally, collocation points radially.
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Fiaure — Spectra of the solutions.
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The algorithm for iterations

How should we move from an approximate solution Xy to a better
solution Xy+1 ?

@ The fixed point or Picard’s algorithm
@ Newton-Raphson algorithm

Michel Rieutord Rotating stars in two dimensions



The algorithm

Fixed point : inspired from implicit schemes

Example :

A¢ = RHS(¢)
To be solved in spheroidal coordinates
~ 1 g%t - -
ADy,; = — (NS + RHS)y + (1 - —)(/I(A(D)N +(1- /l)(AcD)N_l)
8 8

A relaxation parameter. Pro : easy to implement Cons : slow
convergence.
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Newton’s algorithm

F® =0,

SF(®) = J(®)OF.
where J is the jacobian matrix of the nonlinear system.
JEMoxN = —F=Y)

-

and ¥V = ¥ + 62", with a judicious choice of x°,
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e In practice - first results
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The virial

Some examples of models
Comparisons to observations
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The problem of the velocity field

Velocity fields are solutions of
pv- Vi = —VP - pV¢ + F,
Div(p¥) =0

Difficulties :

@ p varies over 10 orders of magnitude : p./ps ~ 101°
@ Viscosity generate extremely small scales L < 107R,.
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The problem of the velocity field

Solution (at the moment) :

@ The star sliced into multidomains to deal with large variations
of density (spectral elements).

@ The boundary condition on velocity is changed so as to
account for Ekman layers without computing them.
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About viscosity in early-type stars

@ At microscopic level

Radiative viscosity

2aT* -

HMrad = 15¢kp

Ekman number
5

5

100k - -

1
1070 02 04 06 0.8 o
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About viscosity in early-type stars

@ At microscopic level

Radiative viscosity
Turbulent viscosity

3 2aT*
HMrad = 15CKp g
@ Turbulent viscosity (Zahn, £
1992)
_ Ri.K (s dQY
:uturb - p 3 N dS
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Ekman boundary layer
Asymptotic method

The Ekman number measures the importance of viscosity

<1

E=—2
2QR?
implies
@ Numerical difficulties for solutions with viscosity

@ Using asymptotic methods is possible to eliminate Ekman
layers
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Meridional circulation

lel0 lel0

z(cm)
z(cm)

-

3 4 2 3 4
s (cm) 1lel0 s (cm) lel0

Asymptotic solution Full solution (E = 1077)

in two dimensions



Boundary layer corrections

0.005
ol 0.00
0.000
s £ -0.05] zZ
B, -5 s o0
- S TN
7 I £l 005
s ]
= . —0.10 gls
= Je gl
-10 > R
-0.010
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— Asymptotic solution E =107
— Full solution
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Boundary layer corrections

0.005
ol 0.00
Py 0.000
s £ -0.05] zZ
2.0-5 = T
7 L £l 005
s = H‘W
= ", —0.10] g
~R _10 "“: re
-0.010
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— Asymptotic solution E=10"°

— Full solution
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Boundary layer corrections
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Surface differential rotation

7.0

6.8

6.6

Q (c/d)

6.4

6.2
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0 7r}8 1r}4 37\:/8 Tr}2

— Asymptotic solution
— Full solution
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Surface differential rotation
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Surface differential rotation
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Convergence towards a solution

3.1 10°
10!
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2.9 105F
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Internal consistency of the solutions

Consistency/internal precision is monitored through 4 criteria :

@ Truncation error (from spectra, Chebyshev or SH)
@ Round-off error (sensitivity to initial conditions)

@ The virial

@ The energy balance
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The virial test

f #-[2Q A pii + pii - Vit + pV¢ — pQ2sé; - Divior]|dV = 0
W)

This is usually normalized by potential energy :

1
W:—fp¢d3?
2 Jw)
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Example of some results

TasLe — Fundamental parameters of rotating 3M,, stellar models.

Q/Q% R(Re) ¢ Vveqkmis)  L(Lo)  Ter(10°K)  log g,

00 197 000 0.0 81.2 12.36  4.33
03 1.96(p) 0.04 158.6  80.0 12.50(p) 4.33(p)
2.05(e) 11.97(e) 4.25(e)
05 1.95p) 0.11 2555 784 12.69(p) 4.34(p)
2.19(e) 11.31(e) 4.11(e)
09 1.93(p) 029 4115 764 12.92(p) 4.34(p)
2.74(e) 8.91(e)  3.32(¢)
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TasLe — Fundamental parameters of rotating 3M,, stellar models.

Q/Qx pe(cgs) T.(10’K) ps/pe Virial test  Energy
test
0.0 408 243 20-10"" s51.10"" 581077
03 410 243 2.1-10"" 8.0-101"  3.41077
05 413 242 2.1-10"" 2.0-10'° 6.110°
09 416 242 1.9-10"" 23.101° 1.1107
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Comparison to 1D models

Mass OR/R oL/L 0pelpe oT./T,
3 1073 3x103 5x103 8x1073
7 6x103 3x10%2 5%x102 3x10™

TasLe — Comparison of the results between the one-dimensional of the
ESTER code and the one-dimensional code TGEC. Same results with
CESAM2k
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Ras Alhague, a Ophiuchi

Reconstruction of an image with the optical interferometer CHARA.

North (milliarcseconds)

1.0 0.5 0.0 -05 -1.0
East (milliarcseconds)
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Ras Alhague - values

Observations Model

Req 2.858+0.015  2.859
Rpot 2.388+0.013  2.379
Teq 7570124 K 7825K
Toor 9384+154 K 9333 K
/Lo 31.3+1 32.8
Veq 240+12km/s 244 km/s

TaBLE — Adjusted parameters : M=2.25Mg, w; = 0.63, X, = 0.27
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Regulus, a Leonis

Reconstruction of an image with the optical interferometer CHARA.

o Leo Image Reconstruction

-
o

o
(&)

North (milliarcseconds)
o o
(¢} o

-1.0

1.0 0.5 0.0 -0.5 -1.0
East (milliarcseconds)
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ulus (a Leo)

lell

0.65

1 o o o

» I o o

vl S & S
Rotation period (days)

I
s
S

0.35

Model values Measured  va-

lues (Che et al
2011)

M (Mo) 4.07 4.15+0.06

Req (Ro) 4.254 4.21+0.07

Rpol (Ro) 3.22 3.22+0.05

L (Lo) 340.5 341427

Veq (km/s) 337.61 336+24

Teq (K) 11038 11010520

Tpol (K) 14495 14520690

XCO]‘C/XCHV. 05

Virial test 5.6-10710

Energy test  2.1.107°

n two dimensions




lell

2.0 1
15 J
1.0 1
y
05 é A\
o. -
0.0 0.5 1.0 15 2.0

lell

Model values Measured  va-

lues (Che et al
2011)

M (Mo) 4.07 4.15+0.06

Req (Ro) 4.254 4.21+0.07

Rpol (Ro) 3.22 3.22+0.05

L (Lo) 340.5 341427

Veq (km/s) 337.61 336+24

Teq (K) 11038 11010+520

Tpol (K) 14495 14520690

Xcore/Xenv. 0.5

Virial test 5.6-10710

Energy test ~ 2.1.107°

n two dimensions




The flows

Differential rotation

lell 0.45
L8 0.44
1.0 0.43
0.5 0.42

w
2
£ 0.41 3
0.0 £
0.40 %
-0.5
0.39
-1.0]
0.38
-1.5
0.37
-2 =1 1 2
lell 0.36

Ficure — Differential rotation of a 5M,, star with Q = 0.7€);.
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The flows

Meridional circulation

00

oS5

-10

1el1

TEEN
/

1e11
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Meridional circulation...
Modele Boussinesq

... driven by a viscosity and density jump at the core-envelope
interface.
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Gravity darkening

@ The effective temperature of

rotating stars is not uniform across
its surface.

@ Poles are hotter and brighter than
the equator.

@ Von Zeipel's law (Barotropic model,
1924) :

1/4
Tefy o gef/f
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Gravity darkening

0.10
< Q =099,
0.05} +++++
& 0.00f 0
50 .
v—10 +
-0.05 ] — :Von Zeipel’s law
++ :ESTER model
-0.10 1 (M =3Mo)

—06 -04 —02 00 02
10g;0Ges

Michel Rieutord Rotating stars in two dimensions



A new model for gravity darkening
Espinosa Lara & Rieutord, Astronomy & Astrophysics 533, A43 (2011)

Hypothesis

@ Deviation from barotropicity is small.

@ Energy flux is antiparallel to the local effective gravity.

F = _f(r’ Q)geff

e Convection : Energy transport driven by bouyancy.
o Radiation : Angle between VT and g.¢ remains small (< 1°).

Michel Rieutord Rotating stars in two dimensions



Angle between VT and Vp  (Q = 0.9C))

cm’ ' lell
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A new model for gravity darkening

In the envelope of a star, where no heat is generated :
V-F=0 = g - Vf+fV- -8 =0

Energy flux depends only on the shape of the equipotential
surfaces and hence on mass distribution.
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A new model for gravity darkening

In the envelope of a star, where no heat is generated :
V-F=0 = g - Vf+fV- -8 =0

Energy flux depends only on the shape of the equipotential
surfaces and hence on mass distribution.

Rapidly rotating stars are usually intermediate or high mass stars,
and thus centrally condensed.
For simplicity we use g.¢ given by the Roche model.

GM .
Beff = ——5€r + Q’rsin Ge;
r
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A new model for gravity darkening

T = ( L )1/4 tanGo 1/4
"~ \4nocGM V tang Seft

O 1 0
cos Gy + Intan 30 = §w2?3 cos> 6 + cos 6 + In tan 3

GM
Qk = —3]
V R;

@ For slow rotation 6y ~ 8 and we recover von Zeipel’s law.

where

Q
@ Gravity darkening depends only on w = o
k
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Gravity darkening exponent : Top oc g7

Lyr

0.20

018

0.16

0,14

0.00 0.05 0.10 0.15 0.20 025 0.30
e=1-R /R,

Fiaure — Observed values of 8 and a simple model of Espinosa Lara &
Rieutord (2011).
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Gravity darkening of Achernar (« Eri)
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Towards evolution

HR diagram track of a 7M,, star of constant angular momentum, starting at Q/Q; = 0.5.

3.7

36

35F

34

log L/L .

33F

32¢

L I L I L L I
31 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18

logT
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Evolution of a 5M, star on the main sequence

-2
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ESTER : The Code

View on GitHub ()

ESTER

Evolution STEllaire en Rotation

Project Description

The ambition of this project is to set out a two-dimensional stellar evolution code, which
fully takes into account the effects of rotation, at any rate and in a self-consistent way.

The difficult, but important point is that rotating stars are spheroidal and are never in
hydrostatic equilibrium. They are pervaded by flows everywhere, even in the stably
stratified radiative regions. These flows are essentially convective flows in thermally
unstable regions (convection zones) and baroclinic flows in the radiative regions. These
latter flows are grosso modo a differential rotation and a meridional circulation, with likely

Ficure — Freely available on the www




@ Extend to lower masses

@ take into account anisotropic mass loss (hence aml) : cf
poster of Damien Gagnier

@ implement the nuclear clock
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But presently we can
@ do asteroseismology of MS stars at any rotation rate
@ invert interferometric visibilities and closure phases
@ determine the validity of 1D models
@ monitor evolution on the MS at constant angular momentum
° ..
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First steps on real evolution
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Fiaure — Hydrogen mass fraction X in a convective core for a 5 Mg, star.
At =2 Myrs.
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