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Some astrophysical motivations

All the stars rotate, and young stars are fast...

We wish to understand
1 the structure, the flows and the atmosphere of a fast rotating

star with a given (initial) chemical composition
2 the consequences of fast rotation on the eigenspectrum of

such a star
3 the way these stars lose angular momentum and what are the

consequences
4 the evolution of rotation during the lifetime of the stars
5 the consequences of rotation on abundances
6 the relations with magnetic activity
7 the validity of 1D models on the rotation axis
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To summarize :

Build self-consistent models to monitor all secular effects of
rotation on stars.
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A timely question

Optical or IR interferometry
VLTI (ESO), NPOI (USA), CHARA (USA) allow a gross imaging of
stars. Examples :
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A timely question
Interferometry

L48 A. Domiciano de Souza et al.: The spinning-top Be star Achernar from VLTI-VINCI

Fig. 1. VLTI ground baselines for Achernar observations and their
corresponding projections onto the sky at different observing times.
Left: Aerial view of VLTI ground baselines for the two pairs of 40 cm
siderostats used for Achernar observations. Color magenta represents
the 66 m (E0-G1; azimuth 147◦, counted from North to East) and
green the 140 m (B3-M0; 58◦). Right: Corresponding baseline pro-
jections onto the sky (Bproj) as seen from the star. Note the very effi-
cient Earth-rotation synthesis resulting in a nearly complete coverage
in azimuth angles.

detection of stellar asymmetries. Moreover, Earth-rotation has
produced an efficient baseline synthesis effect (Fig. 1, right).
A total of more than 20 000 interferograms were recorded on
Achernar, and approximately as many on its calibrators, cor-
responding to more than 20 hours of integration. From these
data, we obtained 60 individual V2 estimates, at an effective
wavelength of λeff = 2.175 ± 0.003 µm.

3. Results
The determination of the shape of Achernar from our set of V2

is not a straightforward task so that some prior assumptions
need to be made in order to construct an initial solution for
our observations. A convenient first approximation is to de-
rive from each V2 an equivalent uniform disc (UD) angu-
lar diameter �UD from the relation V2 = |2J1(z)/z|2. Here,
z = π �UD (α) Bproj (α) λ−1

eff , J1 is the Bessel function of the
first kind and of first order, and α is the azimuth angle of Bproj
at different observing times due to Earth-rotation. The appli-
cation of this simple procedure reveals the extremely oblate
shape of Achernar from the distribution of �UD(α) on an el-
lipse (Fig. 2). Since α, Bproj(α), and λeff are known much bet-
ter than 1%, the measured errors in V2 are associated only to
the uncertainties in �UD. We performed a non-linear regres-
sion fit using the equation of an ellipse in polar coordinates.
Although this equation can be linearized in Cartesian coor-
dinates, such a procedure was preferred to preserve the orig-
inal, and supposedly Gaussian, residuals distribution as well
as to correctly determine the parameters and their expected
errors. We find a major axis 2a = 2.53 ± 0.06 milliarcsec
(mas), a minor axis 2b = 1.62 ± 0.01 mas, and a minor-
axis orientation α0 = 39◦ ± 1◦. Note that the correspond-
ing ratio 2a/2b = 1.56 ± 0.05 determines the equivalent star

Fig. 2. Fit of an ellipse over the observed squared visibilities V2 trans-
lated to equivalent uniform disc angular diameters. Each V2 is plotted
together with its symmetrical value in azimuth. Magenta points are
for the 66 m baseline and green points are for the 140 m baseline.
The fitted ellipse results in major axis 2a = 2.53 ± 0.06 milliarcsec,
minor axis 2b = 1.62 ± 0.01 milliarcsec, and minor axis orientation
α0 = 39◦±1◦ (from North to East). The points distribution reveals an
extremely oblate shape with a ratio 2a/2b = 1.56 ± 0.05.

oblateness only in a first-order UD approximation. To interpret
our data in terms of physical parameters of Achernar, a consis-
tent scenario must be tailored from its basic known properties,
so that we can safely establish the conditions where a coherent
model can be built and discussed.

4. Discussion
Achernar’s pronounced apparent asymmetry obtained in this
first approximation, together with the fact that it is a Be star,
raises the question of whether we observe the stellar photo-
sphere with or without an additional contribution from a CSE.

For example, a flattened envelope in the equatorial plane
would increase the apparent oblateness of the star if it were
to introduce a significant infrared (IR) excess with respect
to the photospheric continuum. Theoretical models (Poeckert
& Marlborough 1978) predict a rather low CSE contribution
in the K band especially for a star tilted at higher inclina-
tions, which should be our case as discussed below. Indeed,
Yudin (2001) reported a near IR excess (difference between
observed and standard color indices in visible and L band
centered at 3.6 µm) to be E(V − L) = 0.m2, with the same
level of uncertainty. Moreover, this author reports a zero in-
trinsic polarization (p∗). These values are significantly smaller
than mean values for Be stars earlier than B3 (E(V − L) >
0.m5 and p∗ > 0.6%), meaning that the Achernar’s CSE is
weaker than in other known Be stars. Further, an intermediate

Figure – Achernar seen with VLTI (Domiciano de Souza et al. AA, 2003)
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A timely question
Interferometry : Mapping the stellar surfaces

Figure – Achernar with VLTI (Domiciano de Souza et al. 2014, AA 569)
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A timely question
Interferometry : Mapping the stellar surfaces

Figure – Vega viewed with NPOI (Peterson et al. ApJ 2006), Ω ∼ 0.93ΩB
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A timely question
Interferometry : Mapping the stellar surfaces

Figure – Altair viewed with CHARA (Monnier et al. 2007).
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A timely question
Interferometry

plus many diameters of A-type stars like

α PsA (with a dusty debris disc, planet ?), β Leo (a δ-Scuti
star), β Pic (very young with planets),
...

a growing series.
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A timely question
Asteroseismology

Altair (flatness ∼ 20%) is a δ-Scuti (Buzasi et al. 2005) just as
Ras Alhague (α Oph)

CoRoT/KEPLER/WIRE/MOST : They yield a large set of
oscillating fast rotating stars.
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A timely question
Asteroseismology

Figure – Part of the oscillation spectrum of Altair from WIRE (Buzasi et al.
2005).

Michel Rieutord Rotating stars in two dimensions



Outline

1 Some background

2 The brief history of 2D models

3 The ideal model

4 Numerics

5 In practice - first results
The velocity
The virial
Some examples of models
Comparisons to observations
Gravity darkening

Michel Rieutord Rotating stars in two dimensions



The historical steps of 2D-models

The pioneers : James (1964) and Roxburgh, Griffith & Sweet
(1965)

The American series : Bodenheimer, Jackson, Mark &
Ostriker (1968-1973)

The Canadian series : Clement (1974-1994)

The Japanese school : Eriguchi (1978-1997)

The German-Japanese school : Eriguchi-Müller (1985-1993)

The revival : Roxburgh 2004, Jackson et al. 2005 et Deupree
2011

The French-Spanish series : Rieutord & Espinosa Lara (2005
- ...)
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The American way

Mark & Ostriker 1968 : Rapidly rotating stars. I. The
self-consistent-field method :
The Poisson equation for the potential is solved using the
Green integral :

φ = −G
∫

ρ

|~r −~r′|
d3~r′

so that boundary conditions on φ are readily met.
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The American series
Stopped in 1973

Models are quite simple (polytropic eos) but face numerous
problems :

the code was not flexible,

the code did not work with M≤ 9 M�,

the code could not deal with very fast rotation, large density
contrasts.
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Other attempts
1973-1997

Numerical difficulties were plaguing the attempts : solutions
were not precise : virial test =2 10−4 (Clement 1973), =4 10−4

(Eriguchi & Müller 1985).

Differential rotation was imposed

Physics was usually very simplified
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Some exotic configurations

Figure – Polytropes with Ω(s) = Ω0/(1 + s2/A2).
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The revival

Roxburgh 2004, 2006 : hydrostatic models with ad hoc
differential rotation for seismology : but no follow up.

Jackson, McGregor & Skummanich 2004, 2005 (ApJ, ApJS) :
try to model the results of interferometry on Achernar, but
hydrostatic + adhoc DR.

Deupree 2011, ApJ, similar models as above but focus on an
A-star (α-Oph). First, prediction of the SED + tentative
predictions on the eigenspectrum.

Rieutord & Espinosa Lara (2005–) head into the dynamics...
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Conclusions

Previous attempts show that the problem is tough : Robust
numerics is desired.

Differential rotation and meridional circulation need to be
included at the outset.

We should reach the state “stellar evolution”
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The ideal model
The first step towards multidimensional stellar models

The model should describe an isolated, non-magnetic star, in
a steady state or quasi-steady state.
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The ideal model
Equations


∆φ = 4πGρ
ρT~v · ~∇S = −Div~F + ε∗

ρ(2~Ω∗ ∧ ~v + ~v · ~∇~v) = −~∇P − ρ~∇(φ − 1
2Ω2
∗s

2) + ~Fv

Div(ρ~v) = 0.

(1)

≡ the equations of a steady flow of a compressible, self-gravitating
fluid, with nuclear reactions...
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The ideal model
Equations - 2

Energy flux
~F = −χr~∇T −

χturbT
RM

~∇S

Viscous force

~Fv = µ ~Fµ(~v) = µ

[
∆~v +

1
3
~∇

(
~∇ · ~v

)
+ 2

(
~∇ ln µ · ~∇

)
~v

+~∇ ln µ × (~∇ × ~v) −
2
3

(
~∇ · ~v

)
~∇ ln µ

]
.

or the prescription of the Reynolds stress tensor.
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The ideal model
Microphysics


P ≡ P(ρ,T) OPAL
κ ≡ κ(ρ,T) OPAL
ε∗ ≡ ε∗(ρ,T) NACRE

(2)
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The ideal model
Boundary conditions

On pressure

Ps =
2
3

g
κ

On velocity
~v · ~n = 0 and ([σ]~n) ∧ ~n = ~0

On temperature
~n · ~∇T + T/LT = 0
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The ideal model
The last touch

The total angular momentum∫
(V)

r sin θρuϕ dV = L

or the equatorial velocity

vϕ(r = R, θ = π/2) = VEq
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The numerical side

Present evolution codes use less than 104 grid points

To keep similar performance a 2D grid should not exceed
102 × 102 suggesting the use of spectral methods.
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Method

The shape of the star is unkown and should be derived,

On this surface boundary conditions apply.

Coordinates should be adapted to the geometry of the star.
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Mappings

Method : taken from Bonazzola, Gourgoulhon et Marck (1998) :
A mapping transforms the natural coordinates ζ, θ, ϕ into the
spherical coordinates (same topology) :

r = ζ + A(ζ)(R(θ) − 1), θ′ = θ, ϕ′ = ϕ (3)

where A(ζ) is a polynomial chosen by the user.
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Mappings

Figure – The mapping.
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Mappings

The natural coordinates are curvilinear and non-orthogonal. The
metric is

gζζ =
r2 + r2

θ

r2r2
ζ

, gζθ = −
rθ

r2rζ
,

gθθ =
1
r2 , gϕϕ =

1
r2 sin2 θ
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Discretisation

Spectral : Chebyshev “radially” and spherical harmonics
horizontally :

φ =
∑

`=0,2,...

φ`(ζi)Ym
`

Spectral space horizontally, collocation points radially.
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Figure – Spectra of the solutions.
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The algorithm for iterations

How should we move from an approximate solution ~XN to a better
solution ~XN+1 ?

The fixed point or Picard’s algorithm

Newton-Raphson algorithm
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The algorithm
Fixed point : inspired from implicit schemes

Example :

∆φ = RHS(φ)

To be solved in spheroidal coordinates

∆̃ΦN+1 =
1
g

(NS + RHS)N +

(
1 −

gζζ

g

) (
λ(∆̃Φ)N + (1 − λ)(∆̃Φ)N−1

)
λ relaxation parameter. Pro : easy to implement Cons : slow
convergence.
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Newton’s algorithm

~F(~x) = ~0,

δ~F(~x) = J(~x)δ~x.

where J is the jacobian matrix of the nonlinear system.

J(~x N)δ~x N = −~F(~x N)

and ~x N+1 = ~x N + δ~x N , with a judicious choice of ~x 0,
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The problem of the velocity field

Velocity fields are solutions of
ρ~v · ~∇~v = −~∇P − ρ~∇φ + ~Fv

Div(ρ~v) = 0
(4)

Difficulties :

ρ varies over 10 orders of magnitude : ρc/ρs ∼ 1010

Viscosity generate extremely small scales L <
∼ 10−4R∗.
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The problem of the velocity field

Solution (at the moment) :

The star sliced into multidomains to deal with large variations
of density (spectral elements).

The boundary condition on velocity is changed so as to
account for Ekman layers without computing them.
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About viscosity in early-type stars

At microscopic level

µrad =
2aT4

15cκρ

Turbulent viscosity (Zahn,
1992)

µturb = ρ
RicK

3

(
s
N

dΩ

ds

)2
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r/R
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Ekman boundary layer
Asymptotic method

The Ekman number measures the importance of viscosity

E =
ν

2ΩR2 � 1

implies

Numerical difficulties for solutions with viscosity

Using asymptotic methods is possible to eliminate Ekman
layers

Michel Rieutord Rotating stars in two dimensions



Meridional circulation
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Boundary layer corrections

U V β
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Surface differential rotation
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Convergence towards a solution
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Internal consistency of the solutions

Consistency/internal precision is monitored through 4 criteria :

Truncation error (from spectra, Chebyshev or SH)

Round-off error (sensitivity to initial conditions)

The virial

The energy balance

Michel Rieutord Rotating stars in two dimensions



The virial test

∫
(V)
~r ·

[
2~Ω ∧ ρ~u + ρ~u · ~∇~u + ρ~∇φ − ρΩ2s~es − Div[σ]

]
dV = 0

This is usually normalized by potential energy :

W =
1
2

∫
(V)
ρφ d3~r
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Example of some results

Table – Fundamental parameters of rotating 3M� stellar models.

Ω/Ωb
K R(R�) ε veq(km/s) L(L�) Teff(103K) log ge

0.0 1.97 0.00 0.0 81.2 12.36 4.33

0.3 1.96(p)
2.05(e)

0.04 158.6 80.0 12.50(p)
11.97(e)

4.33(p)
4.25(e)

0.5 1.95(p)
2.19(e)

0.11 255.5 78.4 12.69(p)
11.31(e)

4.34(p)
4.11(e)

0.9 1.93(p)
2.74(e)

0.29 411.5 76.4 12.92(p)
8.91(e)

4.34(p)
3.32(e)
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Table – Fundamental parameters of rotating 3M� stellar models.

Ω/ΩK ρc(cgs) Tc(107K) ρs/ρc Virial test Energy
test

0.0 40.8 2.43 2.0 ·10-11 5.1 ·10-11 5.8·10-7

0.3 41.0 2.43 2.1 ·10-11 8.0 ·10-11 3.4·10-7

0.5 41.3 2.42 2.1 ·10-11 2.0 ·10-10 6.1·10-6

0.9 41.6 2.42 1.9 ·10-11 2.3 ·10-10 1.1·10-5
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Comparison to 1D models

Mass δR/R δL/L δρc/ρc δTc/Tc

3 10−3 3 × 10−3 5 × 10−3 8 × 10−3

7 6 × 10−3 3 × 10−2 5 × 10−2 3 × 10−4

Table – Comparison of the results between the one-dimensional of the
ESTER code and the one-dimensional code TGEC. Same results with
CESAM2k
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Ras Alhague, α Ophiuchi
Reconstruction of an image with the optical interferometer CHARA.
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Ras Alhague - values

Observations Model

Req 2.858±0.015 2.859
Rpol 2.388±0.013 2.379
Teq 7570±124 K 7825 K
Tpol 9384±154 K 9333 K
L/L� 31.3±1 32.8
Veq 240±12 km/s 244 km/s

Table – Adjusted parameters : M=2.25M�, ωk = 0.63, Xc = 0.27
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Regulus, α Leonis
Reconstruction of an image with the optical interferometer CHARA.
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Regulus (α Leo)
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Model values Measured va-
lues (Che et al
2011)

M (M�) 4.07 4.15±0.06
Req (R�) 4.254 4.21±0.07
Rpol (R�) 3.22 3.22±0.05
L (L�) 340.5 341±27
veq (km/s) 337.61 336±24
Teq (K) 11038 11010±520
Tpol (K) 14495 14520±690
Xcore /Xenv. 0.5
Virial test 5.6·10−10

Energy test 2.1·10−5
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The flows
Differential rotation

Figure – Differential rotation of a 5M� star with Ω = 0.7Ωk.
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The flows
Meridional circulation

Figure – Meridional circulation of a 5M� star with Ω = 0.7Ωk.
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Meridional circulation...
Modèle Boussinesq

... driven by a viscosity and density jump at the core-envelope
interface.
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Gravity darkening

The effective temperature of
rotating stars is not uniform across
its surface.

Poles are hotter and brighter than
the equator.

Von Zeipel’s law (Barotropic model,
1924) :

Teff ∝ g1/4
eff
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Gravity darkening
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A new model for gravity darkening
Espinosa Lara & Rieutord, Astronomy & Astrophysics 533, A43 (2011)

Hypothesis

Deviation from barotropicity is small.

Energy flux is antiparallel to the local effective gravity.

F = −f (r, θ)geff

Convection : Energy transport driven by bouyancy.
Radiation : Angle between ∇T and geff remains small (< 1◦).
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Angle between ∇T and ∇p (Ω = 0.9Ωk)
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A new model for gravity darkening

In the envelope of a star, where no heat is generated :

∇ · F = 0 =⇒ geff · ∇f + f∇ · geff = 0

Energy flux depends only on the shape of the equipotential
surfaces and hence on mass distribution.

Rapidly rotating stars are usually intermediate or high mass stars,
and thus centrally condensed.
For simplicity we use geff given by the Roche model.

geff = −
GM
r2 er + Ω2r sin θes
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A new model for gravity darkening

Teff =

( L
4πσGM

)1/4
√

tan θ0

tan θ
g1/4

eff

where

cos θ0 + ln tan
θ0

2
=

1
3
ω2r̃3 cos3 θ + cos θ + ln tan

θ

2

Gravity darkening depends only on ω =
Ω

Ωk
.

Ωk =

√
GM
R3

e


For slow rotation θ0 ≈ θ and we recover von Zeipel’s law.
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Gravity darkening exponent : Teff ∝ gβeff

Figure – Observed values of β and a simple model of Espinosa Lara &
Rieutord (2011).
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Gravity darkening of Achernar (α Eri)
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Towards evolution
HR diagram track of a 7M� star of constant angular momentum, starting at Ω/Ωk = 0.5.
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Evolution of a 5M� star on the main sequence
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ESTER : The Code

Figure – Freely available on the www
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Outlooks

Extend to lower masses

take into account anisotropic mass loss (hence aml) : cf
poster of Damien Gagnier

implement the nuclear clock
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Outlooks

But presently we can

do asteroseismology of MS stars at any rotation rate

invert interferometric visibilities and closure phases

determine the validity of 1D models

monitor evolution on the MS at constant angular momentum

...
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First steps on real evolution

Figure – Hydrogen mass fraction X in a convective core for a 5 M� star.
∆t = 2 Myrs.
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