The Cosmic Dawn simulation project Galaxy formation during the Epoch of Reionization

Ocvirk+2018

P. Ocvirk and CoDa collaboration Observatoire astronomique de Strasbourg Universite de Strasbourg

The Epoch of Reionization: the next frontier

Pierre OCVIRK - Astrosim, October 2018 - Lyon

The UV background as an external FB

- UV background=> ionization + heat
- o => gas photo-evaporation
- o => SF suppression low-mass galaxies?
- o => satellite galaxies, ultra-faint dwarfs

Pierre OCVIRK - Astrosim, October 2018 - Lyon

Bootes D = 60 kpc $r_h = 220 \text{ pc}$ $M_v = -5.8 \text{ mag}$

Courtesy V. Belokurov ind SDSS collaboratio

Missing satellite problem/solution • Semi-analytical models

- Satellite SF stops at z_{reion}
- o => sats = reionization fossils?
- o => local dwarf pop = local probe of the EoR?

Impact of radiative environment on Milky Way dwarf satellite population

Pierre OCVIRK - Astrosim, October 2018 - Lyon

Internal inside-out reionization

Powered by in situ sources

EoR open questions

- Ionising sources? Galaxies (high/low mass?) / BHs (stellar / Ο supermassive)
- **Ionising UV Escape fraction?** Ο
- Radiative feedback on early galaxies? mass limit for Ο star formation?
- O Signatures of reionization in z=0 galaxies / satellites?

Addressing these questions numerically is extremely challenging:

- **COUPLED** hydro-radiative galaxy formation code 0
- High mass resolution (to resolve all sources down to $10^8 M_{\odot}$ haloes)
- Large volume (galaxy clusters) => $L \sim x10s$ Mpc 0

=> COSMIC DAWN SIMULATIONS

COSMIC DAWN (CODA) PROJECT

Collaborators

D. Aubert, P.R. Shapiro, N. Deparis, J. Sorce, J. Lewis, R. Teyssier, T. Stranex, Y. Dubois, J.-H. Choi, I. Iliev, D. Sullivan, S. Gottloeber, G. Yepes, Y. Hoffmann, F. Roy, Y. Rasera, K. Ahn, H. Park

Fully coupled Radiation-hydro with **RAMSES-CUDATON**

o RAMSES (Teyssier 2002): CPU o gravity (PM) + hydrodynamics o star formation + SN thermal + kinetic feedback

o ATON (Aubert 2008): UV Radiative Transfer, o Hydrogen ionization O Photo-heating + cooling

TITAN at Oak Ridge National Laboratory

Pierre OCVIRK - Astrosim, October 2018 - Lyon

0 18,688 GPUs (world's largest GPU accelerated supercomputer)

O top | in 2013

O now top 5

Pierre OCVIRK - Astrosim, October 2018 - Lyon

- o 16384 GPUs, 65536 CPUs
- o 64 h⁻¹ Mpc side, 4096³ grid
- O Mhalo_{min} ~I x 10⁸ M⊙
- O ∆x ~ 22 kpc comoving (< 3.2 kpc physical)
- $o z_{end} = 5.8$
- ~ 6 days runtime, 2 PB data
- O Planck 2013 cosmology
- New ICs: $M_{Virgo} = 2.e14$ Msun

110 24.149

6 Mpc deep slice

gas density photon density temperature

>10 million haloes 200 million star particles

> Credit: N. Deparis

26 h⁻¹ cMpc (full box is 64 h⁻¹ cMpc)

Cosmic Dawn II global properties

- Good general agreement, however:
- o xHI too low, J21 too high
- o => too many photons, or not enough recombinations?
- o => gas clumping /
 absorbers missing at
 small scales?

CoDall UV Luminosity Function

Pierre OCVIRK - Astrosim, October 2018 - Lyon

- o BPASS Kroupa IMF
- Good agreement over
 ~10 mags
- o slight overproduction at bright end but large dispersion
- o increasing offset with z?
- o No Fe/H evolution
- No evolving dust content

Bouwens+2016 Atek+2018 — CoDa II

Cosmic star formation rate density

- o Madau plot
- o Kroupa binary vs Salpeter IMF=> -0.34 dex
- O CoDall total SFR overshoots observations, but not realistic
- Good agreement when using realistic magnitude constraints (<-17)
- Box total SFR density overestimates "observable" SFR density by x2-3 at z<6
- O Surveys down to -17
 miss a significant fraction of SFR

Cosmic Dawn II: SFR vs (M,z)

- O high M: SFR α M^{1.4}
- O steeper at M<I.e9
- **O** Suppression:
 - O z<=6: SFR drops at low M
 - O High mass haloes unaffected
 - O suppression less dramatic than CoDal but still there!
 - O Important: removed T criterion in subgrid SF recipe

Cosmic Dawn II: SFR vs (M,z)

Pierre OCVIRK - Astrosim, October 2018 - Lyon

- O high M: SFR α M^{1.4}
- O steeper at M<I.e9
- **O** Suppression:
 - O z<=6: SFR drops at low M
 - O High mass haloes unaffected
 - O suppression less dramatic than CoDal but still there!
 - O Important: removed T criterion in SF recipe

Suppression of star formation by UV ionising radiation

Star formation histories of z=5 haloes

- O Auxiliary test boxes 8h⁻¹Mpc
- O Same setup as CoDall
- O 2 sets of physics:
 - o SN, no RT
 - o SN, RT
- O Low mass bin SFR decreases at z<6
- O Small or no effect on higher mass bins.
- O Suppression less strong than CoDal

SF suppression by radiative environment SFH vs (z,δ)

z=5.8 2.5e+08<M/M_{sun}<7.5e+08 4Mpc

Pierre OCVIRK - Astrosim, October 2018 - Lyon

- O SFHs of haloes selected at z=5.8
- O Overdensity at 4Mpc scale
- O Rise and fall, max at z=6.5-7
- Overdense: 0
 - O early reionization
 - O early suppression
- **O** Underdense:
 - O late reionisation
 - late suppression Ο
- **O** at z~6.2: SFR(underdense)>SFR(overd ense)

O at z~5.8: SFRs converge?

SUMMARY

- o Cosmic Dawn simulations are the largest GPU-driven Radiation-Hydrodynamics galaxy formation simulations ever made.
- Describes galaxy formation <=> reionization self-consistently.
- o CoDa II matches well current observational constraints at z>6: global z_{rei} , τ , UV LF down to M₁₆₀₀=-13, while x_{HII} , J_{21} at z<6 are too high
- o Comparing observed vs simulated cosmic SFRD requires accounting for: • Stellar pop models (IMF, binary vs single etc...)
- - o Observational depth limit
- o SF suppression in CoDall less strong than CoDal due to different subgrid models
- Dwarf galaxies SFHs are affected by local reionisation history.

Further analysis and future work

o CODA II:

- o photon budget of galaxies during the EoR (J. Lewis) • Reionization of local group simulacra (J. Sorce) (also, Aubert + 2018) o LAEs LF Lyman alpha intensity mapping (K.Ahn)

- o CODA III (prop. submitted in June 2018) • improve physics: chemical enrichment+ stellar pops + dust o SUMMIT (Titan successor) => 8192^3
- o Euro-HPC: Big HPC (I GEuro) initiative for I-2 sub-exa european machines
 - O Ambition = top I in 2023 => GPUs or Xeon Phi
 - \circ My guess = GPUs
 - o => CoDa IV and beyond

Pierre OCVIRK - Astrosim, October 2018 - Lyon