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Motivations
Performance portability / Kokkos

Motivations of this work - 1

code RAMSES-GPU : Magneto-Rotational Instability, MHD turbulence, ...

developped in CUDA/C++ for astrophysics applications on regular grid
∼ 70k lines of code (out of which ∼ 16k in CUDA)
developed between 2009 and 2014 !

Since then both GPU hardware/sofware have tremendously evolved (in orders of
magnitude in memory bandwidth, number of registers per SM, c++11, ...) ⇒ a lot of
optimization techniques accumulated over the years are not so critically important
anymore on today’s GPU.

Collaborations with domain scientists are
hard when required software skills include
CUDA.

2016-2017 is the right time to refactor code,
sparkle new ways to develop scientific
software at a higher abstraction level

Can we rewrite an application like
RamsesGPU in a new high-level approach
for better software/science productivity ?
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Motivations of this work - 2

Software engineering
Refactoring existing C++/CUDA code
As much as possible performance portable code: write the code once,
and let the user run it on the available target platform with
performance as good as possible.
Prefer a high-level approach among:

Directive-based: OpenACC, OpenMP
ease of use, incremental approach, for large legacy code bases, ...
External smart library implementing parallel programming patterns
(for, reduce, scan, ....):
Kokkos, RAJA, agency, arrayFire libraries are such possibilities

parallel programing patterns as 1st class concepts, architecture adapted
data containers, c++ integration / engineering, ...
Other high-level approaches (more experimental): SYCL (Khronos Group
standard), hpx (heavy use of new c++ standards (11,14,17): std::future,
std::launch::async, distributed parallelism, ...)
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Motivations of this work - 3

Computationnal science ground - Computational Fluid Dynamics
High-order numerical schemes for compressible hydrodynamics
How fast the numerical solution converges to the reference solution
when increase space resolution ? | f − fr | ≤ h−N

From a discussion with Sacha Brun @ CEA, DAp,
A compressible high-order unstructured spectral difference code for
stratified convection in rotating spherical shells by Wiang, Liang and
Miesch, JCP 2015
Spectral Difference Methods is a high order scheme familly '
Discontinuous Galerkin

Spectral Difference Methods have simpler formulation, (should be) more
efficient (esp. high order)
Discontinuous Galerkin, more accurate
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C++ Kokkos library summary

Framework for efficient node-level parallelism (CPU, GPU, ...)

Provides
Computationnal parallel patterns (for, reduce, scan, ...)
Hardware aware memory containers: e.g. A multi-dimensionnal data
container with hardware adapted memory layout

Mostly a header library (C++ metaprograming)
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C++ Kokkos library summary

What do I mean by hardware aware memory containers ?

Most commonly in a C/C++, multi-dimensionnal array access is
done through index linearization (row or column-major in 2D):

i ndex = i +nx ∗ j

Fortran (column-major format) vs C/C++ (row-major format) ⇒
memory layout should be hardware-aware configurable

There is no reason to favour one layout versus the other
column-major is better for vectorization on CPU architecture
row-major is better for high througput architecture e.g. GPU (memory
coalescence)

In Kokkos, one should/must avoid this index linearization at the user
level, let Kokkos::View do this job (decided at compile-time,
hardware adapted)
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7-point Heat kernel with Kokkos - 1

A single high-level parallel programing model for shared memory
architectures (CPU, GPU, ...) ⇒ developper more productive

3d heat (stencil) kernel - SERIAL

// CPU version

for(int i=1; i<nx-1; ++i)

for(int j=1; j<ny-1; ++j)

for(int k=1; k<nz-1; ++k) {

int index = k + j*nz + i*ny*nz

y[index] = -5*x[index] +

( x[index-1] + x[index+1] +

x[index-nz] + x[index+nz] +

x[index-nz*ny] + x[index+nz*ny] );

}
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7-point Heat kernel with Kokkos - 2

A single high-level parallel programing model for shared memory
architectures (CPU, GPU, ...) ⇒ developper more productive

3d heat (stencil) kernel - parallel KOKKOS

// naive Kokkos kernel - for CPU, GPU, ...

Range3d range ( {{0,0,0}}, {{nx,ny,nz}} );

parallel_for(range, KOKKOS_LAMBDA(int i,

int j,

int k) {

y(i,j,k) = -5*x(i,j,k) +

( x(i-1,j ,k ) + x(i+1,j ,k ) +

x(i ,j-1,k ) + x(i ,j+1,k ) +

x(i ,j ,k-1) + x(i ,j ,k+1) );

});
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7-point Heat kernel with Kokkos - 3

A single high-level parallel programing model for shared memory
architectures (CPU, GPU, ...) ⇒ developper more productive

3d heat (stencil) kernel - parallel KOKKOS - VECTORIZATION (CPU)
// Kokkos kernel to promote compiler vectorization, e.g. for Intel Skylake
Range2d range ( {{0,0}}, {{nx,ny}} );

// only parallelize the 2 outer loops (i and j)
parallel_for(range, KOKKOS_LAMBDA(int i,

int j) {

// create 1d subview along z axis - same as a 1d slice in fortran
auto xij = subview(x,i,j,Kokkos::ALL());
auto ...

// only use 1d slices
// let the compiler vectorize the k-loop
for (int k=1; k<nz-1; ++k)
yij(k) = -5*xij(k) +
( xij_1(k) + xij_2(k) +
xij_3(k) + xij_4(k) +
xij(k-1) + xij(k+1) );

});
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Spectral difference methods solver - SDM

High-order SDM (Spectral Difference Methods)

Euler conservation law :
∂Q
∂t + ∂F

∂x + ∂G
∂y + ∂H

∂z +M = 0

SDM implementation up to order N = 6

N d solution (DoF) points

(Gauss-Chebyshev): xs = 1
2

[
1−cos

(
2s−1
2N π

)]
N d−1(N +1) flux points per direction
(Gauss-Legendre): use the roots of Legendre
polynomial of degree N −1 + the two end
points

Use 1D (tensor product) Lagrange
polynomials to represent solution.

reference:

Spectral difference method for compressible flow on unstructured

grid mixed elements, Liang et al, JCP, vol 228, 2009

Lagrange interpolation from
solution points to flux points (and
opposite flux to solution)

Interpolation operators sol2flux
and flux2sol are implemented via
(small size) matrix-vector
multiplication
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Spectral difference methods solver - SDM

High-order SDM (Spectral Difference Method)

Euler conservation law :
∂Q
∂t + ∂F

∂x + ∂G
∂y + ∂H

∂z +M = 0

Use 1D (tensor product) Lagrange
polynomials to represent solution:

Q(x, y) =
i=N−1∑

i=0

j=N−1∑
j=0

Qi , j li (x)l j (y)

where li is the Lagrange polynomial
such that li (x j ) = δi , j and δi , j are
solution point locations.

step1: Lagrange interpolation from
solution points to flux points
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Spectral difference methods solver - SDM

High-order SDM (Spectral Difference Method)

Euler conservation law :
∂Q
∂t + ∂F

∂x + ∂G
∂y + ∂H

∂z +M = 0

Use 1D (tensor product) Lagrange
polynomials to represent solution:

Q(x, y) =
i=N−1∑

i=0

j=N−1∑
j=0

Qi , j li (x)l j (y)

where li is the Lagrange polynomial
such that li (x j ) = δi , j and δi , j are
solution point locations.

step2:

solve Riemann problem at
end points
evaluate fluxes at flux
points
interpolate fluxes at
solution points
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Spectral difference methods solver - SDM

High-order SDM (Spectral Difference Methods) ingredients

Read paramfile

t < tend
Write

restart file

Compute dt
CFL condition

Compute
limiter

positivity preserving

Compute fluxes
inviscid / viscous

Un+1
i = Un

i + ∆t
∑

j Fi,j

Runge-Kutta

MPI + Kokkos parallelization (Intel CPU, Nvidia
GPU, ARM CPU, ...)

SSP (strong stability preserving) Runge-Kutta

No articial viscosity for stability.

TVD limiter:
A Spectral Difference Method for the Euler and Navier-Stokes

Equations on Unstructured Meshes, by Wang et al., J. Sci.
Comp., 2007

Positivity preserving: adapt ideas from DG to
SDM
On positivity-preserving high order discontinuous Galerkin schemes

for compressible Euler equations on rectangular meshes,
Zhang et al, JCP 2010, vol. 229, Issue 23.
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 http://www.sciencedirect.com/science/article/pii/S0021999110004535


Introduction
High-order Spectral Difference schemes

Kokkos SDM versus RamsesGPU performances

High-order numerical scheme comparison - SDM

SDM degree 2 - device Kokkos::Cuda

SDM degree 4 - device Kokkos::Cuda

resolution: 2002, 4002, 8002

Performed on system ouessant (Nvidia GPU P100) at IDRIS/GENCI, France.
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High-order numerical scheme comparison - SDM

SDM degree 2 vs SDM degree 4 for Compressible Euler, TVD_RK3

same # DoFs : 4002 degree 2 ⇔ 2002 degree 4

B high-order ⇒ CFL constraint more restrictive

Time to solution (1 GPU, Pascal P100):

nb cells #DoFs degree time(seconds) speed (Dofs/s)

SDM 2002 4002 2 5 57
SDM 2002 8002 4 25 101
SDM 4002 8002 2 23 93
SDM 4002 16002 4 156 127
SDM 8002 16002 2 155 111
SDM 8002 32002 4 1150 138

SDM implementation is more efficient for high degree (ratio
compute/bandwidth higher ⇒ better for GPU)
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Spectral Difference Method convergence

Use the isentropic vortex advection test (exact solution of
compressible Euler flow): periodic boundary conditions, vortex
should returns to the initial conditions at t = 10.0

T = T0 − (γ−1)∗β2

8γπ2 e1−r 2

ρ = ρ0
T

T0

1.0
γ−1

ρu = ρ
(

u0 − (y − y0)
β

2π
e0.5∗(1.0−r 2)

)

ρv = ρ
(

v0 + (x −x0)
β

2π
e0.5∗(1.0−r 2)

)

ρe = ρT

γ−1
+ 1

2
ρ(u2 + v2)

reference:
https://www.cfd-online.com/Wiki/2-D_vortex_in_isentropic_flow
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2D SDM schemes - Intel Skylake vs Nvidia P100

Skylake K80 P100
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Test on skylake (dual socket)
performed on alfven at
CEA/IRFU.

Skylake compiler is INTEL
icpc 18.0

Time integration is RK3

Pascal P100 is ∼ x2.5 faster
than Skylake (20 cores - dual
socket - 2018)

2018 Skylake performs better
than Nvidia K80
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2D SDM - Intel Skylake vs ARM TX2 vs Nvidia P100

Skylake ARMv8TX2 P100
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N = 2 N = 3 N = 4 N = 5

Test on skylake (dual socket)
performed on alfven at
CEA/IRFU.

Test on ARMv8TX2 (dual
socket) performed on GENCI
prototype @ CEA/DAM

Test on P100 performed on
GENCI prototype ouessant
@ IDRIS

Skylake compiler is GNU g++
7.3

ARMv8TX2 compiler is GNU
g++ 7.1

Time integration is RK3
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Spectral difference methods - numerical viscosity

Effet of numerical viscosity: illustration using same number of #Dof
for the Kelvin-Helmholtz setup:

SDM, degree3, 5122

SDM, degree6, 2562
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Spectral difference methods - numerical viscosity

Effet of numerical viscosity: illustration using same number of #Dof
for the Kelvin-Helmholtz setup:

SDM, degree3, 5122

MUSCL, Finite Volume, degree2, 15362
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Spectral difference methods - Jet test - High Mach flow

SDM scheme, Mach=27, comparison between order 3 and 4
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CanoP - a parallel adaptive mesh refinement framework

What is CanoP ? An applicative
layer on top of p4est
(distributed mesh management
library)

CanoP wraps the core p4est
functionalities in a set of a few
C++ class

CanoP provides a template
application framework: new
users don’t need to have a deep
knowledge of how p4est works

parallel IO (HDF5+XDMF),
input parameter file
management (LUA),
Init, border conditon factory,
refine/coarsen indicator factory
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List of solvers available in CanoP

Some pedagogical schemes (for training new users):

finite volume scalar advection, A. Fikl
scalar viscous/invicid Burgers equation, Q. Wargnier, R. DiBattista, PK

bifluid: a two-phase flow model (F. Drui, A. Fikl, A. Larat; S. Kokh, M. Massot)

ramses: monophasic Euler with 2nd order MUSCL-Hancock numerical
scheme, for astrophysics applications, PK, poisson solver (O. Iffrig, PK),
adaptive time stepping (O. Iffrig)

study angular momentum transport in accretion disk: N. Brucy / W.
Verdier M1 intership, 2018, P. Hennebelle, O. Iffrig, PK)

Spray: droplet evaporation modeling with a kinetic approach, M. Essadki,
PhD thesis, M. Massot, S. De Chaisemartin

BN: two-phase flow with Baer-Nunziato model (F. Chen, PhD student, A.
Allou, JD Parisse, S. Kokh, PK)

MHD-KT: WIP - magneto-hydrodynamics (MHD) with Kurganov-Tadmor
discretization, multi-component plasma, solar physics, magnetic
reconnection problem (Q. Wargnier, PhD student, M. Massot, PK)

ramsesRT: WIP - Euler equations with radiative transfer (H. Bloch, PhD
student, MDLS, 2018, P. Tremblin, M. Gonzalez, A. Audit)
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CanoP : Two-phase flow solver

Experiment:

0.2s

0.3s

0.4s

Credit F. Golay

Simulations with canoP

Credit F. Drui (Phd, MDLS and ECP)
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CanoP : self-gravitating accretion disk

Application to protoplanetary disk, N. Brucy, W. Verdier, M1
intership with P. Hennebelle, O. Iffrig, PK
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Conclusion

Gained expertise at designing / refactoring C++/CUDA applications
using Kokkos

much better global software design : separation of concerns
high-level concept (no CUDA), focus on parallel computing pattern
(for, reduce, scan, ...)
data array access closely look like Fortran syntax
C++11 + template: a key to generic cleaner code

Developped new high-order num schemes: SDM
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Conclusion

Futur developments: towards multi-architecture AMR with Kokkos

adapt SDM scheme to spherical geometry via coordinate
transformation + mesh refinement (CanoP)
∂t Q +∂x F +∂yG +∂z H +M = 0 ⇒ ∂t Q̃ +∂ξF̃ +∂ηG̃ +∂ζH̃ + M̃ = 0

Implement SDM schemes for MHD

WIP: CanoP + Kokkos integration,
make it available to all solvers

towards global solar dynamo and
surface physics with Sacha BRUN
(CEA)
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2D SDM schemes - IBM Power8 vs Nvidia P100

Power8-ht8 K80 P100
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Time integration is RK3

On average Pascal P100 is
×2.8 to ×3.0 faster than
Kepler K80 (single GPU), no
special optimization, just
rebuild with architecture
flags.

Pascal P100 is ∼ x5.8 faster
than Power8 - HT8

by activating 8-way
hyperthreading, Power8
version is 15 to 20% faster

Performed on system
ouessant at
IDRIS/GENCI.
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