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Figure 53. Star cluster formation with Phantom, showing snapshots of gas column density during the gravitational collapse of a 50
M� molecular cloud core, following Bate et al. (2003). Snapshots are shown every 0.2 t↵ (left to right, top to bottom), with the panels
after t > t↵ zoomed in to show the details of the star formation sequence. As in Bate et al. (2003), we resolve the fragmentation to the
opacity limit using a barotropic equation of state.

(2012). A molecular cloud core with initial density
⇢0 = 7.4 ⇥ 10�18 g cm�3 is embedded in pressure equi-
librium with ambient medium of density 2.5 ⇥ 10�19 g
cm�3. The barotropic equation of state given by (333)
is used, setting cs = 2.2 ⇥ 104 cm s�1. The radius of
the core is 4 ⇥ 1016 cm (⇡ 2700 au), with the length
of the cubic domain spanning [x, y, z] = ±8 ⇥ 1016 cm.
The core is in solid body rotation with angular speed
⌦ = 1.77 ⇥ 10�13 rad s�1. The magnetic field is uniform

and aligned with the rotation axis with a mass-to-flux
ratio µ = 5, corresponding to B0 ⇡ 163 µG. A sink par-
ticle is inserted once the gas reaches a density of 10�10 g
cm�3, with an accretion radius of 5 au. Thus, this calcu-
lation models only the evolution of the first hydrostatic
core phase of star formation. The core is composed of
1, 004, 255 particles, with 480, 033 particles in the sur-
rounding medium.
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Figure 37. Balsara-Kim supernova-driven turbulence, showing column density at three di↵erent times at a resolution of 64⇥ 74⇥ 78
particles. Supernovae are injected every 0.00125 in code units, leading to a series of interacting blast waves. Interstellar chemistry and
cooling is turned on, producing a dense filaments in a turbulent interstellar medium.
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Figure 38. Cross-section slice of magnetic pressure at t = 0.006
in the Balsara-Kim supernova-driven turbulence test using 128⇥
148⇥ 156 particles. No large scale artefacts in magnetic energy
are visible, indicating that the simulation is not corrupted by
divergence cleaning.

Our initial setup uses a solution scaled to a radius R =
1, for a polytropic index of n = 3/2, corresponding to
� = 5/3, with K = 0.4244. We solve (325) numerically.
We place the particles initially on a hexagonal close-
packed lattice, truncated to a radius of R = 1, which
we then stretch map (see Section 3.2) such that the
initial radial density profile matches the exact solution.

The relaxation time depends on the initial density
profile and on how far the initial particle configuration
is from equilibrium. Figure 42 shows the solution at

Figure 39. Magnetic energy as a function of time in the Balsara-
Kim supernova-driven turbulence problem. The magnetic energy
increases monotonically by approximately an order of magnitude
before reaching its saturation value at t ⇡ 0.02. There are no spu-
rious spikes in magnetic energy caused by divergence cleaning, in
contrast to what was found by Balsara & Kim (2004).

t = 100 in code units. The polytrope relaxes within a
few dynamical times, with only a slight rearrangement
of the particles from the stretched lattice. The density
profile at all times is equal to within 3 per cent of the
exact solution for r  0.7 and the polytrope remains in
hydrostatic equilibrium.

Once the static solution is obtained, we tested the
energy conservation by giving the star a radial pertur-
bation. That is, we applied a velocity perturbation of
the form vr = 0.2r to the N ⇡ 105 model, and evolved
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Figure 1.Gap opening via Mechanism I, where low mass planets carve a gap in the dust but not the gas. Plots show gas (left) and millimetre dust grain (centre)
surface densities in a dusty disc hosting planets of mass 0.05 MJ (top row) and 0.1 MJ (bottom row). While the 0.05 MJ creates a depletion of dust at the
planet location, the 0.1MJ planet is able to carve a gap in the dust. Neglecting the gravity between the planet and the dust (right panels) shows that the gap is
opened by the tidal torque. The drag torque acts to close the gap due to the radial migration of dust particles from the outer disc (top centre panel).

2.2 Initial conditions

We setup a disc as in Lodato & Price (2010). We assume a central
star of mass 1.3 M� surrounded by a gas disc made of 5 ⇥ 105 gas
particles and a dust disc made of 3 ⇥ 105 dust particles. The two
discs extend from rin = 1 au to rout = 120 au. Wemodel the initial
surface density profiles of the discs using power-laws of the form
⌃(r) = ⌃in(r/rin)�p. We adopt p = 0.1 and set ⌃in such that the
total gas mass contained between rin and rout is 0.0002 M�. We
assume 1 mm dust grains with a corresponding Stokes number (the
ratio between the stopping time and the orbital timescale), St ⇠ 10.
The initial dust-to-gas ratio is 0.01 and St / 1/⌃g ⇠ r

0.1 in the
disc. We simulate only the inner part of the disc since this is what
can be observed with ALMA e.g. in HL Tau. If the gas phase were
to extend to rout = 1000 au, the total mass of the system is� 0.01
M�. We assume a vertically isothermal equation of state P = c

2
s⇢

with cs(r) = cs,in(r/rin)�0.35 and an aspect ratio of the disc that
is 0.05 at 1 au. We set an SPH viscosity parameter �AV = 0.1 giv-
ing an effective Shakura & Sunyaev (1973) viscosity �SS � 0.004.
We setup a planet located at 40 au and evolve the simulations over
40 planetary orbits. This is sufficient to study the physics of dust
gap opening with our assumed grain size, though we caution that
further evolution occurs over longer timescales. We vary the planet
mass in the range [0.05, 0.1, 0.5, 1] MJ to evaluate the relative con-
tributions of the tidal and drag torques.

3 RESULTS

Gap formation is a competition between torques. In a gas disc the
competition is between the tidal torque from the planet trying to
open a gap and the viscous torque trying to close it. Dust, by con-
trast, is pressureless and inviscid, and the competition is between
the tidal torque and the aerodynamic drag torque.

Dust efficiently settles to the midplane in our simulations,
forming a stable dust layer with dust to gas scale height ratio of
⇠

�
�SS/St ⇠ 0.02, consistent with the Dubrulle et al. (1995)

model and other SPH simulations of dusty discs (e.g. Laibe et al.
2008). Settling of grains is expected to slightly reinforce the con-
tribution from the tidal torque by local geometric effects.

3.1 Mechanism I — low mass planets

Fig. 1 demonstrates gap-opening when the planet is not massive
enough to carve a gap in the gas disc. The gas shows only a weak
one-armed spiral density wake supported by pressure, as predicted
by linear density wave theory (Ogilvie & Lubow 2002).

The general expression for the drag torque is

�d = �r
K

⇢d
(v�

d � v
�
g ), (1)

where K is the drag coefficient, ⇢d is the dust density and v
�
d
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Figure 3. Gap opening via Mechanism II, where high mass planets carve a partial or total gap in the gas, and the dust is evacuated from the gap via drag and
tidal torques. Plots are as in Fig. 1, but with planet masses 0.5 MJ (top) and 1 MJ (bottom). Although the tidal torque modifies the structure of the gap and
stabilises the corotation region, the structure in the dust phase is dominated by the drag torque (comparing centre and right panels).
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Figure 4. Azimuthally averaged surface density of the gas corresponding to the simulations of Fig 3. The dotted vertical line indicates the planet’s location.
Gaps are created in both the gas and the dust phases.

of the gap forms narrow ridges just outside the orbit of the planet
(Ayliffe et al. 2012; Picogna & Kley 2015). This effect does not oc-
cur inside of the orbital radius of the planet because the drag torque
is strong enough to efficiently damp any resonances that develop
(Fouchet et al. 2007; Ayliffe et al. 2012), similar to what occurs in
the whole disc in Mechanism I. For our 1MJ planet, the outer edge
of the dust gap is close to the 3:2 resonance (r ⇠ 52 au), inducing
a double peaked outer edge in the dust density profile (see Fig. 4).

The right panel of Figs 3 and 4 shows that for high mass plan-

ets, the formation of a gap in the dust can be recovered simply by
considering drag effects and neglecting the action of the gravita-
tional potential of the planet. However, the detailed structure of the
gap is still different when the tidal torque is included: the gap is
wider, deeper, with a corotation region, sharper edges and more
asymmetries due to external resonances.

MNRAS 000, 1–5 (2016)

Figure 57. Gap opening in dusty protoplanetary discs with Phantom (from Dipierro et al. 2016), showing surface density in gas
(left) and mm dust grains (right) in two simulations of planet-disc interaction with planet masses of 0.1 MJupiter (top) and 1 MJupiter

(bottom) in orbit around a 1.3 M� star. In the top case a gap is opened only in the dust disc, while in the bottom row the gap is
opened in both gas and dust. The colour bar is logarithmic surface density in cgs units.

7 Summary

We have outlined the algorithms and physics currently
implemented in the Phantom smoothed particle hy-
drodynamics and magnetohydrodynamics code in the
hope that this will prove useful to both users and devel-
opers of the code. We have also demonstrated the per-
formance of the code as it currently stands on a series
of standard test problems, most with known or analytic
solutions. While no code is ever ‘finished’ nor bug-free,
it is our hope that the code as it stands will prove use-
ful to the scientific community. Works in progress for
future code releases include radiation hydrodynamics,
continuing development of the dust algorithms, and an
implementation of relativistic hydrodynamics.
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Figure 1. Computing density in SPH gas (solid points) and dust (hollow circles) mixtures. Standard bell-shaped, Gaussian-like, kernels are adopted (weighting
indicated by the shading), with a single smoothing length on each particle related to the local number density of particles of the same type. This provides good
density estimates in both extremes — where dust is concentrated below the gas scale (left panel) and where gas is concentrated below the dust scale (right
panel). The density of another fluid at the position of a reference fluid (e.g. dust density at the location of a gas particle) is computed using the same smoothing
length but only neighbours of the desired type. This density is thus allowed to be identically zero, as would be the case for the density of gas-at-dust in the left
panel (top), or dust-at-gas in the right panel.

2.1.3 Energy equation

The evolution equation for the specific internal energy of the gas,
ug, is given by

⇢̂g
dug

dt
= �Pg

h
✓r · vg + (1 � ✓)r · vd

i
+ ⇤drag + ⇤therm, (12)

where the first term corresponds to the usual compressive (PdV)
term with the volume reduced by the dust filling factor ✓. The sec-
ond term is the work done by the gas in triggering buoyancy e↵ects.
The third term is the frictional heating due to the drag force, given
by

⇤drag = ⇢̂gK(vg � vd)2. (13)

The fourth, thermal coupling, term arises when the internal tem-
perature of the grains di↵ers from the gas temperature (c.f. Marble
1970; Harlow & Amsden 1975), and in general consists of terms re-
lated to heat transfer due to conduction (⇤cond) and radiation (⇤rad),
given by

⇤therm ⌘ ⇤cond + ⇤rad = Q(Tg � Td) + R(aT
4
g � aT

4
d ), (14)

where Tg and Td are the temperatures of the gas and dust, respec-
tively, a is the radiation constant and Q and R are coe�cients, de-
pendent on gas and dust properties, that characterise the heat trans-
fer. The thermal energy of the dust evolves according to

⇢̂d
dud

dt
= �⇤therm. (15)

2.2 Densities for two-fluid mixtures in SPH

2.2.1 Computing densities in two-fluid SPH

For two-fluid mixtures, we require a density estimate for each

phase, corresponding to the exact solution of Eqs. 4 and 5 in SPH.
The main complication arises from the fact that the local particle
spacing can be di↵erent for each fluid, implying that the two fluids

should have di↵erent resolution lengths calculated based on the lo-
cal particle number density of their own type. Figure 1 illustrates
the two limiting cases, i.e. a high concentration of dust in a di-
luted gas (left panel) and conversely a high concentration of gas in
a low density fluid of dust (right panel). In each case the smoothing
length for each type is determined by the local number density of
particles of the same type. That is, the SPH translation of Eqs. 4
and 5 correspond to

⇢̂a =
X

b

mbWab(ha); ha = ⌘

 
ma

⇢̂a

!1/⌫

, (16)

⇢̂i =
X

j

m jWi j(hi); hi = ⌘

 
mj

⇢̂i

!1/⌫

, (17)

where ⌫ is the number of spatial dimensions and ⌘ is a constant
determining the resolution length as a function of the local particle
spacing (typically ⌘ = 1.2 is a good choice for the standard cubic
spline kernel, see Price 2011). We adopt the convention that the
indices a, b, c refer to quantities computed on gas particles while
i, j, k refer to quantities computed on dust particles. Note that the
densities and smoothing lengths are independently computed for
each fluid and are thus — so far — only defined on particles of
the same type. The numerical solution of Eqs. 16 and 17 involves
determining both ⇢̂ and h for each type simultaneously, since they
are mutually dependent, thus requiring an iterative procedure. The
procedure is identical to that adopted in standard variable smooth-
ing length SPH formulations (see e.g. Price & Monaghan 2007 for
details).

An additional complication arises from the need to compute
the volume filling fraction ✓ (Eq. 1), defined on a gas particle, a,
according to

✓a = 1 �
⇢̂d,a

⇢d
, (18)

which depends on the density of dust at the gas particle loca-
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2.1 Fundamentals

2.1.1 Lagrangian hydrodynamics

SPH solves the equations of hydrodynamics in La-
grangian form. The fluid is discretised onto a set of
‘particles’ of mass m that are moved with the local fluid
velocity v. Hence the two basic equations common to
all physics in Phantom are

dr

dt
= v, (1)

d⇢

dt
= �⇢(r · v), (2)

where r is the particle position and ⇢ is the density.
These equations use the Lagrangian time derivative,
d/dt ⌘ @/@t + v · r, and are the Lagrangian update of
the particle position and the continuity equation (ex-
pressing the conservation of mass), respectively.

2.1.2 Conservation of mass in SPH

The density is computed in Phantom using the usual
SPH density sum,

⇢a =
X

b

mbW (|ra � rb|, ha), (3)

where a and b are particle labels, m is the mass of the
particle, W is the smoothing kernel, h is the smoothing
length and the sum is over neighbouring particles (i.e.
those within Rkernh, where Rkern is the dimensionless
cuto↵ radius of the smoothing kernel). Taking the La-
grangian time derivative of (3), one obtains the discrete
form of (2) in SPH

d⇢a
dt

=
1

⌦a

X

b

mb(va � vb) · raWab(ha), (4)

where Wab(ha) ⌘ W (|ra � rb|, ha) and ⌦a is a term re-
lated to the gradient of the smoothing length (Springel
& Hernquist, 2002; Monaghan, 2002) given by

⌦a ⌘ 1 �
@ha

@⇢a

X

b

mb
@Wab(ha)

@ha
. (5)

Equation (4) is not used directly to compute the den-
sity in Phantom, since evaluating (3) provides a time-
independent solution to (2) (see e.g. Monaghan 1992;
Price 2012a for details). The time-dependent version
(4) is equivalent to (3) up to a boundary term (see
Price, 2008) but is only used in Phantom to predict
the smoothing length at the next timestep in order to
reduce the number of iterations required to evaluate the
density (see below).

Since (3), (4) and (5) all depend on the kernel eval-
uated on neighbours within Rkern times ha, all three
of these summations may be computed simultaneously
using a single loop over the same set of neighbours. De-
tails of the neighbour finding procedure are given in
Section 2.1.7, below.

2.1.3 Setting the smoothing length

The smoothing length itself is specified as a function of
the particle number density, n, via

ha = hfactn
�1/3
a = hfact

✓
ma

⇢a

◆1/3

, (6)

where hfact is the proportionality factor specifying the
smoothing length in terms of the mean local particle
spacing and the second equality holds only for equal
mass particles, which are enforced in Phantom. The
restriction to equal mass particles means that the reso-
lution strictly follows mass, which may be restrictive for
problems involving large density contrasts (e.g. Hutchi-
son et al., 2016). However, our view is that the potential
pitfalls of unequal mass particles (see e.g. Monaghan &
Price, 2006) are currently too great to allow for a robust
implementation in a public code.

As described in Price (2012a), the proportionality
constant hfact can be related to the mean neighbour
number according to

Nneigh =
4

3
⇡(Rkernhfact)

3
, (7)

however this is only equal to the actual neighbour num-
ber for particles in a uniform density distribution (more
specifically, for a density distribution with no second
derivative), meaning that the actual neighbour number
varies. The default setting for hfact is 1.2, corresponding
to an average of 57.9 neighbours for a kernel truncated
at 2h (i.e. for Rkern = 2) in three dimensions. Table 1
lists the settings recommended for di↵erent choices of
kernel. The derivative required in (5) is given by

@ha

@⇢a
= �

3ha

⇢a
. (8)

2.1.4 Iterations for h and ⇢

The mutual dependence of ⇢ and h means that a
rootfinding procedure is necessary to solve both (3)
and (6) simultaneously. The procedure implemented in
Phantom follows Price & Monaghan (2004b) and Price
& Monaghan (2007), solving, for each particle, the equa-
tion

f(ha) = ⇢sum(ha) � ⇢(ha) = 0, (9)

where ⇢sum is the density computed from (3) and

⇢(ha) = ma(hfact/ha)
3
, (10)

from (6). Equation (9) is solved with Newton-Raphson
iterations,

ha,new = ha �
f(ha)

f 0(ha)
, (11)

where the derivative is given by

f
0(ha) =

X

b

mb
@Wab(ha)

@ha
�

@⇢a

@ha
= �

3⇢a
ha

⌦a. (12)
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the particle number density, n, via

ha = hfactn
�1/3
a = hfact

✓
ma

⇢a

◆1/3

, (6)

where hfact is the proportionality factor specifying the
smoothing length in terms of the mean local particle
spacing and the second equality holds only for equal
mass particles, which are enforced in Phantom. The
restriction to equal mass particles means that the reso-
lution strictly follows mass, which may be restrictive for
problems involving large density contrasts (e.g. Hutchi-
son et al., 2016). However, our view is that the potential
pitfalls of unequal mass particles (see e.g. Monaghan &
Price, 2006) are currently too great to allow for a robust
implementation in a public code.

As described in Price (2012a), the proportionality
constant hfact can be related to the mean neighbour
number according to

Nneigh =
4

3
⇡(Rkernhfact)

3
, (7)

however this is only equal to the actual neighbour num-
ber for particles in a uniform density distribution (more
specifically, for a density distribution with no second
derivative), meaning that the actual neighbour number
varies. The default setting for hfact is 1.2, corresponding
to an average of 57.9 neighbours for a kernel truncated
at 2h (i.e. for Rkern = 2) in three dimensions. Table 1
lists the settings recommended for di↵erent choices of
kernel. The derivative required in (5) is given by

@ha

@⇢a
= �

3ha

⇢a
. (8)

2.1.4 Iterations for h and ⇢

The mutual dependence of ⇢ and h means that a
rootfinding procedure is necessary to solve both (3)
and (6) simultaneously. The procedure implemented in
Phantom follows Price & Monaghan (2004b) and Price
& Monaghan (2007), solving, for each particle, the equa-
tion

f(ha) = ⇢sum(ha) � ⇢(ha) = 0, (9)

where ⇢sum is the density computed from (3) and

⇢(ha) = ma(hfact/ha)
3
, (10)

from (6). Equation (9) is solved with Newton-Raphson
iterations,

ha,new = ha �
f(ha)

f 0(ha)
, (11)

where the derivative is given by

f
0(ha) =

X

b

mb
@Wab(ha)

@ha
�

@⇢a

@ha
= �

3⇢a
ha

⌦a. (12)
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Figure 2. Example of the kd-tree build. For illustrative purposes
only we have constructed a two dimensional version of the tree on
the projected particle distribution in the x-y plane of the particle
distribution from a polytrope test with 13,115 particles. Each
level of the tree recursively splits the particle distribution in half,
bisecting the longest axis at the centre of mass until the number
of particles in a given cell is < Nmin. For clarity we have used
Nmin = 100 in the above example, while Nmin = 10 by default.

valuable here, as the ‘best’ choice of kernel remains an
open question (see also the kernels proposed by Cabezón
et al. 2008; Garćıa-Senz et al. 2014). An even broader
question regards the kernel used for dissipation terms,
for gravitational force softening and for drag in two-fluid
applications (discussed further in Section 2.13; Laibe &
Price 2012a found that double-hump shaped kernels led
to more than an order of magnitude improvement in ac-
curacy when used for drag terms).

A simple and practical approach to checking that ker-
nel bias does not a↵ect the solution that we have used
and advocate when using Phantom is to first attempt
a simulation with the cubic spline, but then to check the
results with a low resolution calculation using the quin-
tic kernel. If the results are identical then it indicates
that the kernel bias is not important, but if not then
use of smoother but costlier kernels such as M6 or C

6

may be warranted. Wendland kernels are mainly useful
for preventing the pairing instability and are necessary
if one desires to employ a large number of neighbours.

2.1.7 Neighbour finding

Finding neighbours is the main computational expense
to any SPH code. Earlier versions of Phantom con-
tained three di↵erent options for neighbour-finding: A
Cartesian grid, a cylindrical grid and a kd-tree. This
was because we wrote the code originally with non-self-

gravitating problems in mind, for which the overhead
associated with a treecode is unnecessary. Since the im-
plementation of self-gravity in Phantom the kd-tree
has become the default, and is now su�ciently well opti-
mised that the fixed-grid modules are more e�cient only
for simulations that do not employ either self-gravity or
individual particle timesteps, which are rare in astro-
physics.

A key optimisation strategy employed in Phantom
is to perform the neighbour search for groups of par-
ticles. The results of this search (i.e. positions of all
trial neighbours) are then cached and used to check for
neighbours for individual particles in the group. Our kd-
tree algorithm closely follows Gafton & Rosswog (2011),
splitting the particles recursively based on the centre of
mass and bisecting the longest axis at each level (Fig-
ure 2). The tree build is refined until a cell contains less
than Nmin particles, which is then referred to as a ‘leaf
node’. By default, Nmin = 10. The neighbour search is
then performed once for each leaf node. Further details
are given in Appendix A.3.1.

2.2 Hydrodynamics

2.2.1 Compressible hydrodynamics

The equations of compressible hydrodynamics are
solved in the form

dv

dt
= �

rP

⇢
+ ⇧shock + aext(r, t)

+ asink�gas + aselfgrav, (23)

du

dt
= �

P

⇢
(r · v) + ⇤shock �

⇤cool

⇢
, (24)

where P is the pressure, u is the specific internal energy,
aext, asink�gas and aselfgrav refer to (optional) accelera-
tions from ‘external’ or ‘body’ forces (Section 2.4), sink
particles (Section 2.8) and self-gravity (Section 2.12),
respectively. ⇧shock and ⇤shock are dissipation terms re-
quired to give the correct entropy increase at a shock
front, and ⇤cool is a cooling term.

2.2.2 Equation of state

The equation set is closed by an equation of state relat-
ing the pressure to the density and/or internal energy.
For an ideal gas this is given by

P = (� � 1)⇢u, (25)

where � is the adiabatic index and the sound speed cs

is given by

cs =

s
�P

⇢
. (26)
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The internal energy, u, can be related to the gas tem-
perature, T , using

P =
⇢kBT

µmH
, (27)

giving

T =
µmH

kB
(� � 1)u, (28)

where kB is Boltzmann’s constant, µ is the mean molec-
ular weight and mH is the mass of a hydrogen atom.
Thus to infer the temperature one needs to specify a
composition, but only the internal energy a↵ects the
gas dynamics. Equation (25) with � = 5/3 is the de-
fault equation of state in Phantom.

In the case where shocks are assumed to radiate
away all of the heat generated at the shock front (i.e.
⇤shock = 0) and there is no cooling (⇤cool = 0), (24) be-
comes simply, using (2)

du

dt
=

P

⇢2

d⇢

dt
, (29)

which, using (25) can be integrated to give

P = K⇢
�
, (30)

where K is the polytropic constant. Even more simply,
in the case where the temperature is assumed constant,
or prescribed as a function of position, the equation of
state is simply

P = c
2
s⇢. (31)

In both of these cases, (30) and (31), the internal energy
does not need to be stored. In this case the temperature
is e↵ectively set by the value of K (and the density if
� 6= 1). Specifically,

T =
µmH

kB
K⇢

��1
. (32)

2.2.3 Code units

For pure hydrodynamics physical units are irrelevant
to the numerical results since (1)–(2) and (23)–(24) are
scale free to all but the Mach number. Hence setting
physical units is only useful when comparing simula-
tions with nature, when physical heating or cooling
rates are applied via (24), or when one wishes to in-
terpret the results in terms of temperature using (28)
or (32).

In the case where gravitational forces are applied, ei-
ther using an external force (Section 2.4) or using self-
gravity (Section 2.12), we adopt the standard procedure
of transforming units such that G = 1 in code units, i.e.

utime =

s
u
3
dist

Gumass
, (33)

where utime, udist and umass are the units of time, length
and mass, respectively. Additional constraints apply

when using relativistic terms (Section 2.4.5) or mag-
netic fields (Section 2.10.3).

2.2.4 Equation of motion in SPH

We follow the variable smoothing length formulation
described by Price (2012a), Price & Federrath (2010)
and Lodato & Price (2010). We discretise (23) using

dva

dt
= �

X

b

mb


Pa + q

a
ab

⇢2a⌦a
raWab(ha) +

Pb + q
b
ab

⇢
2
b⌦b

raWab(hb)

�

+ aext(xa, t) + aa
sink�gas + aa

selfgrav, (34)

where the q
a
ab and q

b
ab terms represent the artificial vis-

cosity (discussed in Section 2.2.7, below).

2.2.5 Internal energy equation

The internal energy equation (24) is discretised using
the time derivative of the density sum (c.f. 29), which
from (4) gives

dua

dt
=

Pa

⇢2a⌦a

X

b

mbvab · raWab(ha) + ⇤shock �
⇤cool

⇢
.

(35)
where vab ⌘ va � vb. Indeed, in the variational formu-
lation of SPH (e.g. Price, 2012a), this expression is used
as a constraint to derive (34), which guarantees both the
conservation of energy and entropy (the latter in the ab-
sence of dissipation terms). The shock capturing terms
in the internal energy equation are discussed below.

By default we assume an adiabatic gas, meaning that
PdV work and shock heating terms contribute to the
thermal energy of the gas, no energy is radiated to
the environment, and total energy is conserved. To ap-
proximate a radiative gas one may set one or both
of these terms to zero. Neglecting the shock heating
term, ⇤shock, gives an approximation equivalent to a
polytropic equation of state (30), as described in Sec-
tion 2.2.2. Setting both shock and work contributions to
zero implies that du/dt = 0, meaning that each particle
will simply retain its initial temperature.

2.2.6 Conservation of energy in SPH

Does evolving the internal energy equation imply that
total energy is not conserved? Wrong! Total energy in
SPH, for the case of hydrodynamics, is given by

E =
X

a

ma

✓
1

2
v
2
a + ua

◆
. (36)

Taking the (Lagrangian) time derivative, we find that
conservation of energy corresponds to

dE

dt
=

X

a

ma

✓
va ·

dva

dt
+

dua

dt

◆
= 0. (37)

Inserting our expressions (34) and (35), and neglecting
for the moment dissipative terms and external forces,
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, (29)

which, using (25) can be integrated to give

P = K⇢
�
, (30)

where K is the polytropic constant. Even more simply,
in the case where the temperature is assumed constant,
or prescribed as a function of position, the equation of
state is simply

P = c
2
s⇢. (31)

In both of these cases, (30) and (31), the internal energy
does not need to be stored. In this case the temperature
is e↵ectively set by the value of K (and the density if
� 6= 1). Specifically,

T =
µmH

kB
K⇢

��1
. (32)

2.2.3 Code units

For pure hydrodynamics physical units are irrelevant
to the numerical results since (1)–(2) and (23)–(24) are
scale free to all but the Mach number. Hence setting
physical units is only useful when comparing simula-
tions with nature, when physical heating or cooling
rates are applied via (24), or when one wishes to in-
terpret the results in terms of temperature using (28)
or (32).

In the case where gravitational forces are applied, ei-
ther using an external force (Section 2.4) or using self-
gravity (Section 2.12), we adopt the standard procedure
of transforming units such that G = 1 in code units, i.e.

utime =

s
u
3
dist

Gumass
, (33)

where utime, udist and umass are the units of time, length
and mass, respectively. Additional constraints apply

when using relativistic terms (Section 2.4.5) or mag-
netic fields (Section 2.10.3).

2.2.4 Equation of motion in SPH

We follow the variable smoothing length formulation
described by Price (2012a), Price & Federrath (2010)
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The internal energy equation (24) is discretised using
the time derivative of the density sum (c.f. 29), which
from (4) gives
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(35)
where vab ⌘ va � vb. Indeed, in the variational formu-
lation of SPH (e.g. Price, 2012a), this expression is used
as a constraint to derive (34), which guarantees both the
conservation of energy and entropy (the latter in the ab-
sence of dissipation terms). The shock capturing terms
in the internal energy equation are discussed below.

By default we assume an adiabatic gas, meaning that
PdV work and shock heating terms contribute to the
thermal energy of the gas, no energy is radiated to
the environment, and total energy is conserved. To ap-
proximate a radiative gas one may set one or both
of these terms to zero. Neglecting the shock heating
term, ⇤shock, gives an approximation equivalent to a
polytropic equation of state (30), as described in Sec-
tion 2.2.2. Setting both shock and work contributions to
zero implies that du/dt = 0, meaning that each particle
will simply retain its initial temperature.

2.2.6 Conservation of energy in SPH

Does evolving the internal energy equation imply that
total energy is not conserved? Wrong! Total energy in
SPH, for the case of hydrodynamics, is given by

E =
X

a

ma
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◆
. (36)

Taking the (Lagrangian) time derivative, we find that
conservation of energy corresponds to

dE
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=
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+
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= 0. (37)

Inserting our expressions (34) and (35), and neglecting
for the moment dissipative terms and external forces,
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where kB is Boltzmann’s constant, µ is the mean molec-
ular weight and mH is the mass of a hydrogen atom.
Thus to infer the temperature one needs to specify a
composition, but only the internal energy a↵ects the
gas dynamics. Equation (25) with � = 5/3 is the de-
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In the case where shocks are assumed to radiate
away all of the heat generated at the shock front (i.e.
⇤shock = 0) and there is no cooling (⇤cool = 0), (24) be-
comes simply, using (2)

du

dt
=

P
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dt
, (29)

which, using (25) can be integrated to give

P = K⇢
�
, (30)

where K is the polytropic constant. Even more simply,
in the case where the temperature is assumed constant,
or prescribed as a function of position, the equation of
state is simply

P = c
2
s⇢. (31)

In both of these cases, (30) and (31), the internal energy
does not need to be stored. In this case the temperature
is e↵ectively set by the value of K (and the density if
� 6= 1). Specifically,

T =
µmH

kB
K⇢

��1
. (32)

2.2.3 Code units

For pure hydrodynamics physical units are irrelevant
to the numerical results since (1)–(2) and (23)–(24) are
scale free to all but the Mach number. Hence setting
physical units is only useful when comparing simula-
tions with nature, when physical heating or cooling
rates are applied via (24), or when one wishes to in-
terpret the results in terms of temperature using (28)
or (32).

In the case where gravitational forces are applied, ei-
ther using an external force (Section 2.4) or using self-
gravity (Section 2.12), we adopt the standard procedure
of transforming units such that G = 1 in code units, i.e.

utime =
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3
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Gumass
, (33)

where utime, udist and umass are the units of time, length
and mass, respectively. Additional constraints apply

when using relativistic terms (Section 2.4.5) or mag-
netic fields (Section 2.10.3).

2.2.4 Equation of motion in SPH

We follow the variable smoothing length formulation
described by Price (2012a), Price & Federrath (2010)
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the time derivative of the density sum (c.f. 29), which
from (4) gives
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(35)
where vab ⌘ va � vb. Indeed, in the variational formu-
lation of SPH (e.g. Price, 2012a), this expression is used
as a constraint to derive (34), which guarantees both the
conservation of energy and entropy (the latter in the ab-
sence of dissipation terms). The shock capturing terms
in the internal energy equation are discussed below.

By default we assume an adiabatic gas, meaning that
PdV work and shock heating terms contribute to the
thermal energy of the gas, no energy is radiated to
the environment, and total energy is conserved. To ap-
proximate a radiative gas one may set one or both
of these terms to zero. Neglecting the shock heating
term, ⇤shock, gives an approximation equivalent to a
polytropic equation of state (30), as described in Sec-
tion 2.2.2. Setting both shock and work contributions to
zero implies that du/dt = 0, meaning that each particle
will simply retain its initial temperature.

2.2.6 Conservation of energy in SPH

Does evolving the internal energy equation imply that
total energy is not conserved? Wrong! Total energy in
SPH, for the case of hydrodynamics, is given by

E =
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Taking the (Lagrangian) time derivative, we find that
conservation of energy corresponds to

dE
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=
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+
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Inserting our expressions (34) and (35), and neglecting
for the moment dissipative terms and external forces,
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Figure 2. Example of the kd-tree build. For illustrative purposes
only we have constructed a two dimensional version of the tree on
the projected particle distribution in the x-y plane of the particle
distribution from a polytrope test with 13,115 particles. Each
level of the tree recursively splits the particle distribution in half,
bisecting the longest axis at the centre of mass until the number
of particles in a given cell is < Nmin. For clarity we have used
Nmin = 100 in the above example, while Nmin = 10 by default.

valuable here, as the ‘best’ choice of kernel remains an
open question (see also the kernels proposed by Cabezón
et al. 2008; Garćıa-Senz et al. 2014). An even broader
question regards the kernel used for dissipation terms,
for gravitational force softening and for drag in two-fluid
applications (discussed further in Section 2.13; Laibe &
Price 2012a found that double-hump shaped kernels led
to more than an order of magnitude improvement in ac-
curacy when used for drag terms).

A simple and practical approach to checking that ker-
nel bias does not a↵ect the solution that we have used
and advocate when using Phantom is to first attempt
a simulation with the cubic spline, but then to check the
results with a low resolution calculation using the quin-
tic kernel. If the results are identical then it indicates
that the kernel bias is not important, but if not then
use of smoother but costlier kernels such as M6 or C

6

may be warranted. Wendland kernels are mainly useful
for preventing the pairing instability and are necessary
if one desires to employ a large number of neighbours.

2.1.7 Neighbour finding

Finding neighbours is the main computational expense
to any SPH code. Earlier versions of Phantom con-
tained three di↵erent options for neighbour-finding: A
Cartesian grid, a cylindrical grid and a kd-tree. This
was because we wrote the code originally with non-self-

gravitating problems in mind, for which the overhead
associated with a treecode is unnecessary. Since the im-
plementation of self-gravity in Phantom the kd-tree
has become the default, and is now su�ciently well opti-
mised that the fixed-grid modules are more e�cient only
for simulations that do not employ either self-gravity or
individual particle timesteps, which are rare in astro-
physics.

A key optimisation strategy employed in Phantom
is to perform the neighbour search for groups of par-
ticles. The results of this search (i.e. positions of all
trial neighbours) are then cached and used to check for
neighbours for individual particles in the group. Our kd-
tree algorithm closely follows Gafton & Rosswog (2011),
splitting the particles recursively based on the centre of
mass and bisecting the longest axis at each level (Fig-
ure 2). The tree build is refined until a cell contains less
than Nmin particles, which is then referred to as a ‘leaf
node’. By default, Nmin = 10. The neighbour search is
then performed once for each leaf node. Further details
are given in Appendix A.3.1.

2.2 Hydrodynamics

2.2.1 Compressible hydrodynamics

The equations of compressible hydrodynamics are
solved in the form

dv

dt
= �

rP

⇢
+ ⇧shock + aext(r, t)

+ asink�gas + aselfgrav, (23)

du

dt
= �

P

⇢
(r · v) + ⇤shock �

⇤cool

⇢
, (24)

where P is the pressure, u is the specific internal energy,
aext, asink�gas and aselfgrav refer to (optional) accelera-
tions from ‘external’ or ‘body’ forces (Section 2.4), sink
particles (Section 2.8) and self-gravity (Section 2.12),
respectively. ⇧shock and ⇤shock are dissipation terms re-
quired to give the correct entropy increase at a shock
front, and ⇤cool is a cooling term.

2.2.2 Equation of state

The equation set is closed by an equation of state relat-
ing the pressure to the density and/or internal energy.
For an ideal gas this is given by

P = (� � 1)⇢u, (25)

where � is the adiabatic index and the sound speed cs

is given by

cs =

s
�P

⇢
. (26)
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Figure 2. Example of the kd-tree build. For illustrative purposes
only we have constructed a two dimensional version of the tree on
the projected particle distribution in the x-y plane of the particle
distribution from a polytrope test with 13,115 particles. Each
level of the tree recursively splits the particle distribution in half,
bisecting the longest axis at the centre of mass until the number
of particles in a given cell is < Nmin. For clarity we have used
Nmin = 100 in the above example, while Nmin = 10 by default.

valuable here, as the ‘best’ choice of kernel remains an
open question (see also the kernels proposed by Cabezón
et al. 2008; Garćıa-Senz et al. 2014). An even broader
question regards the kernel used for dissipation terms,
for gravitational force softening and for drag in two-fluid
applications (discussed further in Section 2.13; Laibe &
Price 2012a found that double-hump shaped kernels led
to more than an order of magnitude improvement in ac-
curacy when used for drag terms).

A simple and practical approach to checking that ker-
nel bias does not a↵ect the solution that we have used
and advocate when using Phantom is to first attempt
a simulation with the cubic spline, but then to check the
results with a low resolution calculation using the quin-
tic kernel. If the results are identical then it indicates
that the kernel bias is not important, but if not then
use of smoother but costlier kernels such as M6 or C
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may be warranted. Wendland kernels are mainly useful
for preventing the pairing instability and are necessary
if one desires to employ a large number of neighbours.

2.1.7 Neighbour finding

Finding neighbours is the main computational expense
to any SPH code. Earlier versions of Phantom con-
tained three di↵erent options for neighbour-finding: A
Cartesian grid, a cylindrical grid and a kd-tree. This
was because we wrote the code originally with non-self-

gravitating problems in mind, for which the overhead
associated with a treecode is unnecessary. Since the im-
plementation of self-gravity in Phantom the kd-tree
has become the default, and is now su�ciently well opti-
mised that the fixed-grid modules are more e�cient only
for simulations that do not employ either self-gravity or
individual particle timesteps, which are rare in astro-
physics.

A key optimisation strategy employed in Phantom
is to perform the neighbour search for groups of par-
ticles. The results of this search (i.e. positions of all
trial neighbours) are then cached and used to check for
neighbours for individual particles in the group. Our kd-
tree algorithm closely follows Gafton & Rosswog (2011),
splitting the particles recursively based on the centre of
mass and bisecting the longest axis at each level (Fig-
ure 2). The tree build is refined until a cell contains less
than Nmin particles, which is then referred to as a ‘leaf
node’. By default, Nmin = 10. The neighbour search is
then performed once for each leaf node. Further details
are given in Appendix A.3.1.

2.2 Hydrodynamics

2.2.1 Compressible hydrodynamics

The equations of compressible hydrodynamics are
solved in the form

dv

dt
= �

rP

⇢
+ ⇧shock + aext(r, t)

+ asink�gas + aselfgrav, (23)

du

dt
= �

P

⇢
(r · v) + ⇤shock �

⇤cool

⇢
, (24)

where P is the pressure, u is the specific internal energy,
aext, asink�gas and aselfgrav refer to (optional) accelera-
tions from ‘external’ or ‘body’ forces (Section 2.4), sink
particles (Section 2.8) and self-gravity (Section 2.12),
respectively. ⇧shock and ⇤shock are dissipation terms re-
quired to give the correct entropy increase at a shock
front, and ⇤cool is a cooling term.

2.2.2 Equation of state

The equation set is closed by an equation of state relat-
ing the pressure to the density and/or internal energy.
For an ideal gas this is given by

P = (� � 1)⇢u, (25)

where � is the adiabatic index and the sound speed cs

is given by

cs =

s
�P

⇢
. (26)
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we find

dE

dt
= �

X

a

X

b

mamb


Pavb

⇢2a⌦a
· raWab(ha)

+
Pbva

⇢
2
b⌦b

· raWab(hb)

�
= 0.

(38)

The double summation on the right hand side equals
zero because the kernel gradient, and hence the over-
all sum, is antisymmetric. That is, raWab = �rbWba.
This means one can relabel the summation indices ar-
bitrarily in one half of the sum, and add it to one half
of the original sum to give zero. One may straightfor-
wardly verify that this remains true when one includes
the dissipative terms (see below).

This means that even though we employ the inter-
nal energy equation, total energy remains conserved to
machine precision in the spatial discretisation. That is,
energy is conserved irrespective of the number of parti-
cles, the number of neighbours or the choice of smooth-
ing kernel. The only non-conservation of energy arises
from the ordinary di↵erential equation solver one em-
ploys to solve the left hand side of the equations. We
thus employ a symplectic time integration scheme in
order to preserve the conservation properties as accu-
rately as possible (Section 2.3.1).

2.2.7 Shock-capturing: momentum equation

The shock capturing dissipation terms are implemented
following Monaghan (1997), derived by analogy with
Riemann solvers from the special relativistic dissipa-
tion terms proposed by Chow & Monaghan (1997).
These were extended by Price & Monaghan (2004b,
2005) to magnetohydrodynamics (MHD) and recently
to dust-gas mixtures by Laibe & Price (2014b). In a
recent paper, Puri & Ramachandran (2014) found this
approach, along with the Morris & Monaghan (1997)
switch (which they referred to as the ‘Monaghan-Price-
Morris’ formulation) to be the most accurate and robust
method for shock-capturing in SPH when compared to
several other approaches, including Godunov SPH (e.g.
Inutsuka, 2002; Cha & Whitworth, 2003).

The formulation in Phantom di↵ers from that given
in Price (2012a) only by the way that the density and
signal speed in the q terms are averaged, as described in
Price & Federrath (2010) and Lodato & Price (2010).
That is, we use

⇧a
shock ⌘ �

X

b

mb


q
a
ab

⇢2a⌦a
raWab(ha) +

q
b
ab

⇢
2
b⌦b

raWab(hb)

�
,

(39)
where

q
a
ab =

(
�

1
2⇢avsig,avab · r̂ab, vab · r̂ab < 0

0 otherwise
(40)

where vab ⌘ va � vb, r̂ab ⌘ (ra � rb)/|ra � rb| is the
unit vector along the line of sight between the particles,
and vsig is the maximum signal speed, which depends
on the physics implemented. For hydrodynamics this is
given by

vsig,a = ↵
AV
a cs,a + �

AV
|vab · r̂ab|, (41)

where in general ↵AV
a 2 [0, 1] is controlled by a switch

(see Section 2.2.9, below), while �
AV = 2 by default.

Importantly, ↵ does not multiply the �
AV term. The

�
AV term provides a second order Von Neumann &

Richtmyer-like term that prevents particle interpenetra-
tion (e.g. Lattanzio et al., 1986; Monaghan, 1989) and
thus �

AV
� 2 is needed wherever particle penetration

may occur. This is important in accretion disc simula-
tions where use of a low ↵ may be acceptable in the
absence of strong shocks, but a low � will lead to parti-
cle penetration of the disc midplane, which is the cause
of a number of convergence issues (Meru & Bate, 2011,
2012). Price & Federrath (2010) found that �AV = 4 was
necessary at high Mach number (M & 5) to maintain a
sharp shock structure, which despite nominally increas-
ing the viscosity was found to give less dissipation over-
all because particle penetration no longer occurred at
shock fronts.

2.2.8 Shock-capturing: internal energy equation

The key insight from Chow & Monaghan (1997) was
that shock capturing not only involves a viscosity term
but involves dissipating the jump in each component
of the energy, implying a conductivity term in hydro-
dynamics and resistive dissipation in MHD (see Sec-
tion 2.10.5). The resulting contribution to the internal
energy equation is given by (e.g. Price, 2012a)

⇤shock ⌘ �
1

⌦a⇢a

X

b

mbvsig,a
1

2
(vab · r̂ab)

2
Fab(ha)

+
X

b

mb↵uv
u
sig(ua � ub)

1

2


Fab(ha)

⌦a⇢a
+

Fab(hb)

⌦b⇢b

�

+ ⇤artres, (42)

where the first term provides the viscous shock heating,
the second term provides an artificial thermal conduc-
tivity and Fab is defined as in (15) and ⇤artres is the
heating due to artificial resistivity (Equation 182). The
signal speed we use for conductivity term di↵ers from
the one used for viscosity, as discussed by Price (2008)
and Price (2012a). In Phantom we use

v
u
sig =

s
|Pa � Pb|

⇢ab

, (43)

for simulations that do not involve self-gravity or exter-
nal body forces (Price, 2008), and

v
u
sig = |vab · r̂ab|, (44)
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we find

dE

dt
= �

X

a

X

b

mamb


Pavb

⇢2a⌦a
· raWab(ha)

+
Pbva

⇢
2
b⌦b

· raWab(hb)

�
= 0.

(38)

The double summation on the right hand side equals
zero because the kernel gradient, and hence the over-
all sum, is antisymmetric. That is, raWab = �rbWba.
This means one can relabel the summation indices ar-
bitrarily in one half of the sum, and add it to one half
of the original sum to give zero. One may straightfor-
wardly verify that this remains true when one includes
the dissipative terms (see below).

This means that even though we employ the inter-
nal energy equation, total energy remains conserved to
machine precision in the spatial discretisation. That is,
energy is conserved irrespective of the number of parti-
cles, the number of neighbours or the choice of smooth-
ing kernel. The only non-conservation of energy arises
from the ordinary di↵erential equation solver one em-
ploys to solve the left hand side of the equations. We
thus employ a symplectic time integration scheme in
order to preserve the conservation properties as accu-
rately as possible (Section 2.3.1).

2.2.7 Shock-capturing: momentum equation

The shock capturing dissipation terms are implemented
following Monaghan (1997), derived by analogy with
Riemann solvers from the special relativistic dissipa-
tion terms proposed by Chow & Monaghan (1997).
These were extended by Price & Monaghan (2004b,
2005) to magnetohydrodynamics (MHD) and recently
to dust-gas mixtures by Laibe & Price (2014b). In a
recent paper, Puri & Ramachandran (2014) found this
approach, along with the Morris & Monaghan (1997)
switch (which they referred to as the ‘Monaghan-Price-
Morris’ formulation) to be the most accurate and robust
method for shock-capturing in SPH when compared to
several other approaches, including Godunov SPH (e.g.
Inutsuka, 2002; Cha & Whitworth, 2003).

The formulation in Phantom di↵ers from that given
in Price (2012a) only by the way that the density and
signal speed in the q terms are averaged, as described in
Price & Federrath (2010) and Lodato & Price (2010).
That is, we use

⇧a
shock ⌘ �

X

b

mb


q
a
ab

⇢2a⌦a
raWab(ha) +

q
b
ab

⇢
2
b⌦b

raWab(hb)

�
,

(39)
where

q
a
ab =

(
�

1
2⇢avsig,avab · r̂ab, vab · r̂ab < 0

0 otherwise
(40)

where vab ⌘ va � vb, r̂ab ⌘ (ra � rb)/|ra � rb| is the
unit vector along the line of sight between the particles,
and vsig is the maximum signal speed, which depends
on the physics implemented. For hydrodynamics this is
given by

vsig,a = ↵
AV
a cs,a + �

AV
|vab · r̂ab|, (41)

where in general ↵AV
a 2 [0, 1] is controlled by a switch

(see Section 2.2.9, below), while �
AV = 2 by default.

Importantly, ↵ does not multiply the �
AV term. The

�
AV term provides a second order Von Neumann &

Richtmyer-like term that prevents particle interpenetra-
tion (e.g. Lattanzio et al., 1986; Monaghan, 1989) and
thus �

AV
� 2 is needed wherever particle penetration

may occur. This is important in accretion disc simula-
tions where use of a low ↵ may be acceptable in the
absence of strong shocks, but a low � will lead to parti-
cle penetration of the disc midplane, which is the cause
of a number of convergence issues (Meru & Bate, 2011,
2012). Price & Federrath (2010) found that �AV = 4 was
necessary at high Mach number (M & 5) to maintain a
sharp shock structure, which despite nominally increas-
ing the viscosity was found to give less dissipation over-
all because particle penetration no longer occurred at
shock fronts.

2.2.8 Shock-capturing: internal energy equation

The key insight from Chow & Monaghan (1997) was
that shock capturing not only involves a viscosity term
but involves dissipating the jump in each component
of the energy, implying a conductivity term in hydro-
dynamics and resistive dissipation in MHD (see Sec-
tion 2.10.5). The resulting contribution to the internal
energy equation is given by (e.g. Price, 2012a)

⇤shock ⌘ �
1

⌦a⇢a

X

b

mbvsig,a
1

2
(vab · r̂ab)

2
Fab(ha)

+
X

b

mb↵uv
u
sig(ua � ub)

1

2


Fab(ha)

⌦a⇢a
+

Fab(hb)

⌦b⇢b

�

+ ⇤artres, (42)

where the first term provides the viscous shock heating,
the second term provides an artificial thermal conduc-
tivity and Fab is defined as in (15) and ⇤artres is the
heating due to artificial resistivity (Equation 182). The
signal speed we use for conductivity term di↵ers from
the one used for viscosity, as discussed by Price (2008)
and Price (2012a). In Phantom we use

v
u
sig =

s
|Pa � Pb|

⇢ab

, (43)

for simulations that do not involve self-gravity or exter-
nal body forces (Price, 2008), and

v
u
sig = |vab · r̂ab|, (44)
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we find

dE

dt
= �

X

a

X

b

mamb


Pavb

⇢2a⌦a
· raWab(ha)

+
Pbva

⇢
2
b⌦b

· raWab(hb)

�
= 0.

(38)

The double summation on the right hand side equals
zero because the kernel gradient, and hence the over-
all sum, is antisymmetric. That is, raWab = �rbWba.
This means one can relabel the summation indices ar-
bitrarily in one half of the sum, and add it to one half
of the original sum to give zero. One may straightfor-
wardly verify that this remains true when one includes
the dissipative terms (see below).

This means that even though we employ the inter-
nal energy equation, total energy remains conserved to
machine precision in the spatial discretisation. That is,
energy is conserved irrespective of the number of parti-
cles, the number of neighbours or the choice of smooth-
ing kernel. The only non-conservation of energy arises
from the ordinary di↵erential equation solver one em-
ploys to solve the left hand side of the equations. We
thus employ a symplectic time integration scheme in
order to preserve the conservation properties as accu-
rately as possible (Section 2.3.1).

2.2.7 Shock-capturing: momentum equation

The shock capturing dissipation terms are implemented
following Monaghan (1997), derived by analogy with
Riemann solvers from the special relativistic dissipa-
tion terms proposed by Chow & Monaghan (1997).
These were extended by Price & Monaghan (2004b,
2005) to magnetohydrodynamics (MHD) and recently
to dust-gas mixtures by Laibe & Price (2014b). In a
recent paper, Puri & Ramachandran (2014) found this
approach, along with the Morris & Monaghan (1997)
switch (which they referred to as the ‘Monaghan-Price-
Morris’ formulation) to be the most accurate and robust
method for shock-capturing in SPH when compared to
several other approaches, including Godunov SPH (e.g.
Inutsuka, 2002; Cha & Whitworth, 2003).

The formulation in Phantom di↵ers from that given
in Price (2012a) only by the way that the density and
signal speed in the q terms are averaged, as described in
Price & Federrath (2010) and Lodato & Price (2010).
That is, we use

⇧a
shock ⌘ �

X

b

mb


q
a
ab

⇢2a⌦a
raWab(ha) +

q
b
ab

⇢
2
b⌦b

raWab(hb)

�
,

(39)
where

q
a
ab =

(
�

1
2⇢avsig,avab · r̂ab, vab · r̂ab < 0

0 otherwise
(40)

where vab ⌘ va � vb, r̂ab ⌘ (ra � rb)/|ra � rb| is the
unit vector along the line of sight between the particles,
and vsig is the maximum signal speed, which depends
on the physics implemented. For hydrodynamics this is
given by

vsig,a = ↵
AV
a cs,a + �

AV
|vab · r̂ab|, (41)

where in general ↵AV
a 2 [0, 1] is controlled by a switch

(see Section 2.2.9, below), while �
AV = 2 by default.

Importantly, ↵ does not multiply the �
AV term. The

�
AV term provides a second order Von Neumann &

Richtmyer-like term that prevents particle interpenetra-
tion (e.g. Lattanzio et al., 1986; Monaghan, 1989) and
thus �

AV
� 2 is needed wherever particle penetration

may occur. This is important in accretion disc simula-
tions where use of a low ↵ may be acceptable in the
absence of strong shocks, but a low � will lead to parti-
cle penetration of the disc midplane, which is the cause
of a number of convergence issues (Meru & Bate, 2011,
2012). Price & Federrath (2010) found that �AV = 4 was
necessary at high Mach number (M & 5) to maintain a
sharp shock structure, which despite nominally increas-
ing the viscosity was found to give less dissipation over-
all because particle penetration no longer occurred at
shock fronts.

2.2.8 Shock-capturing: internal energy equation

The key insight from Chow & Monaghan (1997) was
that shock capturing not only involves a viscosity term
but involves dissipating the jump in each component
of the energy, implying a conductivity term in hydro-
dynamics and resistive dissipation in MHD (see Sec-
tion 2.10.5). The resulting contribution to the internal
energy equation is given by (e.g. Price, 2012a)

⇤shock ⌘ �
1

⌦a⇢a

X

b

mbvsig,a
1

2
(vab · r̂ab)

2
Fab(ha)

+
X

b

mb↵uv
u
sig(ua � ub)

1

2


Fab(ha)

⌦a⇢a
+

Fab(hb)

⌦b⇢b

�

+ ⇤artres, (42)

where the first term provides the viscous shock heating,
the second term provides an artificial thermal conduc-
tivity and Fab is defined as in (15) and ⇤artres is the
heating due to artificial resistivity (Equation 182). The
signal speed we use for conductivity term di↵ers from
the one used for viscosity, as discussed by Price (2008)
and Price (2012a). In Phantom we use

v
u
sig =

s
|Pa � Pb|

⇢ab

, (43)

for simulations that do not involve self-gravity or exter-
nal body forces (Price, 2008), and

v
u
sig = |vab · r̂ab|, (44)
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for simulations that do (Wadsley et al., 2008). The im-
portance of the conductivity term for treating contact
discontinuities was highlighted by Price (2008), explain-
ing the poor results found by Agertz et al. (2007) in
SPH simulations of Kelvin-Helmholtz instabilities run
across contact discontinuities (discussed further in Sec-
tion 5.1.4). With (44), we have found there is no need
for further switches to reduce conductivity (e.g. Price
2004; Price & Monaghan 2005; Valdarnini 2016), since
the e↵ective thermal conductivity  is second order in
the smoothing length (/ h

2). Phantom therefore uses
↵u = 1 by default in (42) and we have not yet found a
situation where this leads to excess smoothing.

It may be readily shown that the total energy remains
conserved in the presence of dissipation by combining
(42) with the corresponding dissipative terms in (34).
The contribution to the entropy from both viscosity and
conductivity is also positive definite (see the appendix
in Price & Monaghan 2004b for the mathematical proof
in the case of conductivity).

2.2.9 Shock detection

The standard approach to reducing dissipation in SPH
away from shocks for the last 15 years has been the
switch proposed by Morris & Monaghan (1997), where
the dimensionless viscosity parameter ↵ is evolved for
each particle a according to

d↵a

dt
= max(�r · va, 0) �

(↵a � ↵min)

⌧a
, (45)

where ⌧ ⌘ h/ (�decayvsig) and �decay = 0.1 by default.
We set vsig in the decay time equal to the sound speed
to avoid the need to store d↵/dt, since r · v is already
stored in order to compute (4). This is the switch used
for numerous turbulence applications with Phantom
(e.g. Price & Federrath, 2010; Price et al., 2011; Tricco
et al., 2016b) where it is important to minimise nu-
merical dissipation in order to maximise the Reynolds
number (e.g. Valdarnini, 2011; Price, 2012b).

More recently, Cullen & Dehnen (2010) proposed a
more advanced switch using the time derivative of the
velocity divergence. A modified version based on the
gradient of the velocity divergence was also proposed
by Read & Hayfield (2012). We implement a variation
on the Cullen & Dehnen (2010) switch, using a shock
indicator of the form

Aa = ⇠a max


�

d

dt
(r · va), 0

�
, (46)

where

⇠ =
|r · v|

2

|r · v|2 + |r ⇥ v|2
(47)

is a modification of the Balsara (1995) viscosity limiter
for shear flows. We use this to set ↵ according to

↵loc,a = min

✓
10h2

aAa

c2s,a

,↵max

◆
, (48)

where cs is the sound speed and ↵max = 1. We use
cs in the expression for ↵loc also for magnetohydrody-
namics (Section 2.10) since we found using the magne-
tosonic speed led to a poor treatment of MHD shocks.
If ↵loc,a > ↵a we set ↵a = ↵loc,a, otherwise we evolve
↵a according to

d↵a

dt
= �

(↵a � ↵loc,a)

⌧a
, (49)

where ⌧ is defined as in the Morris & Monaghan (1997)
version, above. We evolve ↵ in the predictor part of the
integrator only, i.e. with a first order time integration, to
avoid complications in the corrector step. However, we
perform the predictor step implicitly using a backward
Euler method, i.e.

↵
n+1
a =

↵
n
a + ↵loc,a�t/⌧a

1 + �t/⌧a
, (50)

which ensures that the decay is stable regardless of
the timestep (we do this for the Morris & Monaghan
method also).

We use the method outlined in Appendix B3 of Cullen
& Dehnen (2010) to compute d(r · va)/dt. That is, we
first compute the gradient tensors of the velocity, v, and
acceleration, a (used from the previous timestep), dur-
ing the density loop using an SPH derivative operator
that is exact to linear order, that is, with the matrix
correction outlined in Price (2004, 2012a), namely

R
ij
a
@v

k
a

@x
j
a

=
X

b

mb

�
v
k
b � v

k
a

� @Wab(ha)

@xi
, (51)

where

R
ij
a =

X

b

mb

�
x
i
b � x

i
a

� @Wab(ha)

@xj
⇡ �

ij
, (52)

and repeated tensor indices imply summation. Finally,
we construct the time derivative of the velocity diver-
gence according to

d

dt

✓
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i
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◆
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i
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�
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a

, (53)

where, as previously, repeated i and j indices imply
summation. In Cartesian coordinates the last term in
(53) can be written out explicitly using
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. (54)
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for simulations that do (Wadsley et al., 2008). The im-
portance of the conductivity term for treating contact
discontinuities was highlighted by Price (2008), explain-
ing the poor results found by Agertz et al. (2007) in
SPH simulations of Kelvin-Helmholtz instabilities run
across contact discontinuities (discussed further in Sec-
tion 5.1.4). With (44), we have found there is no need
for further switches to reduce conductivity (e.g. Price
2004; Price & Monaghan 2005; Valdarnini 2016), since
the e↵ective thermal conductivity  is second order in
the smoothing length (/ h

2). Phantom therefore uses
↵u = 1 by default in (42) and we have not yet found a
situation where this leads to excess smoothing.

It may be readily shown that the total energy remains
conserved in the presence of dissipation by combining
(42) with the corresponding dissipative terms in (34).
The contribution to the entropy from both viscosity and
conductivity is also positive definite (see the appendix
in Price & Monaghan 2004b for the mathematical proof
in the case of conductivity).

2.2.9 Shock detection

The standard approach to reducing dissipation in SPH
away from shocks for the last 15 years has been the
switch proposed by Morris & Monaghan (1997), where
the dimensionless viscosity parameter ↵ is evolved for
each particle a according to

d↵a

dt
= max(�r · va, 0) �

(↵a � ↵min)

⌧a
, (45)

where ⌧ ⌘ h/ (�decayvsig) and �decay = 0.1 by default.
We set vsig in the decay time equal to the sound speed
to avoid the need to store d↵/dt, since r · v is already
stored in order to compute (4). This is the switch used
for numerous turbulence applications with Phantom
(e.g. Price & Federrath, 2010; Price et al., 2011; Tricco
et al., 2016b) where it is important to minimise nu-
merical dissipation in order to maximise the Reynolds
number (e.g. Valdarnini, 2011; Price, 2012b).

More recently, Cullen & Dehnen (2010) proposed a
more advanced switch using the time derivative of the
velocity divergence. A modified version based on the
gradient of the velocity divergence was also proposed
by Read & Hayfield (2012). We implement a variation
on the Cullen & Dehnen (2010) switch, using a shock
indicator of the form

Aa = ⇠a max


�

d

dt
(r · va), 0

�
, (46)

where

⇠ =
|r · v|

2

|r · v|2 + |r ⇥ v|2
(47)

is a modification of the Balsara (1995) viscosity limiter
for shear flows. We use this to set ↵ according to

↵loc,a = min

✓
10h2

aAa

c2s,a

,↵max

◆
, (48)

where cs is the sound speed and ↵max = 1. We use
cs in the expression for ↵loc also for magnetohydrody-
namics (Section 2.10) since we found using the magne-
tosonic speed led to a poor treatment of MHD shocks.
If ↵loc,a > ↵a we set ↵a = ↵loc,a, otherwise we evolve
↵a according to

d↵a

dt
= �

(↵a � ↵loc,a)

⌧a
, (49)

where ⌧ is defined as in the Morris & Monaghan (1997)
version, above. We evolve ↵ in the predictor part of the
integrator only, i.e. with a first order time integration, to
avoid complications in the corrector step. However, we
perform the predictor step implicitly using a backward
Euler method, i.e.

↵
n+1
a =

↵
n
a + ↵loc,a�t/⌧a

1 + �t/⌧a
, (50)

which ensures that the decay is stable regardless of
the timestep (we do this for the Morris & Monaghan
method also).

We use the method outlined in Appendix B3 of Cullen
& Dehnen (2010) to compute d(r · va)/dt. That is, we
first compute the gradient tensors of the velocity, v, and
acceleration, a (used from the previous timestep), dur-
ing the density loop using an SPH derivative operator
that is exact to linear order, that is, with the matrix
correction outlined in Price (2004, 2012a), namely

R
ij
a
@v

k
a

@x
j
a

=
X

b

mb

�
v
k
b � v

k
a

� @Wab(ha)

@xi
, (51)
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and repeated tensor indices imply summation. Finally,
we construct the time derivative of the velocity diver-
gence according to
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where, as previously, repeated i and j indices imply
summation. In Cartesian coordinates the last term in
(53) can be written out explicitly using
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for simulations that do (Wadsley et al., 2008). The im-
portance of the conductivity term for treating contact
discontinuities was highlighted by Price (2008), explain-
ing the poor results found by Agertz et al. (2007) in
SPH simulations of Kelvin-Helmholtz instabilities run
across contact discontinuities (discussed further in Sec-
tion 5.1.4). With (44), we have found there is no need
for further switches to reduce conductivity (e.g. Price
2004; Price & Monaghan 2005; Valdarnini 2016), since
the e↵ective thermal conductivity  is second order in
the smoothing length (/ h

2). Phantom therefore uses
↵u = 1 by default in (42) and we have not yet found a
situation where this leads to excess smoothing.

It may be readily shown that the total energy remains
conserved in the presence of dissipation by combining
(42) with the corresponding dissipative terms in (34).
The contribution to the entropy from both viscosity and
conductivity is also positive definite (see the appendix
in Price & Monaghan 2004b for the mathematical proof
in the case of conductivity).

2.2.9 Shock detection

The standard approach to reducing dissipation in SPH
away from shocks for the last 15 years has been the
switch proposed by Morris & Monaghan (1997), where
the dimensionless viscosity parameter ↵ is evolved for
each particle a according to

d↵a

dt
= max(�r · va, 0) �

(↵a � ↵min)

⌧a
, (45)

where ⌧ ⌘ h/ (�decayvsig) and �decay = 0.1 by default.
We set vsig in the decay time equal to the sound speed
to avoid the need to store d↵/dt, since r · v is already
stored in order to compute (4). This is the switch used
for numerous turbulence applications with Phantom
(e.g. Price & Federrath, 2010; Price et al., 2011; Tricco
et al., 2016b) where it is important to minimise nu-
merical dissipation in order to maximise the Reynolds
number (e.g. Valdarnini, 2011; Price, 2012b).

More recently, Cullen & Dehnen (2010) proposed a
more advanced switch using the time derivative of the
velocity divergence. A modified version based on the
gradient of the velocity divergence was also proposed
by Read & Hayfield (2012). We implement a variation
on the Cullen & Dehnen (2010) switch, using a shock
indicator of the form

Aa = ⇠a max


�

d

dt
(r · va), 0

�
, (46)

where

⇠ =
|r · v|

2

|r · v|2 + |r ⇥ v|2
(47)

is a modification of the Balsara (1995) viscosity limiter
for shear flows. We use this to set ↵ according to
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, (48)

where cs is the sound speed and ↵max = 1. We use
cs in the expression for ↵loc also for magnetohydrody-
namics (Section 2.10) since we found using the magne-
tosonic speed led to a poor treatment of MHD shocks.
If ↵loc,a > ↵a we set ↵a = ↵loc,a, otherwise we evolve
↵a according to

d↵a

dt
= �

(↵a � ↵loc,a)

⌧a
, (49)

where ⌧ is defined as in the Morris & Monaghan (1997)
version, above. We evolve ↵ in the predictor part of the
integrator only, i.e. with a first order time integration, to
avoid complications in the corrector step. However, we
perform the predictor step implicitly using a backward
Euler method, i.e.

↵
n+1
a =

↵
n
a + ↵loc,a�t/⌧a

1 + �t/⌧a
, (50)

which ensures that the decay is stable regardless of
the timestep (we do this for the Morris & Monaghan
method also).

We use the method outlined in Appendix B3 of Cullen
& Dehnen (2010) to compute d(r · va)/dt. That is, we
first compute the gradient tensors of the velocity, v, and
acceleration, a (used from the previous timestep), dur-
ing the density loop using an SPH derivative operator
that is exact to linear order, that is, with the matrix
correction outlined in Price (2004, 2012a), namely
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where
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and repeated tensor indices imply summation. Finally,
we construct the time derivative of the velocity diver-
gence according to
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where, as previously, repeated i and j indices imply
summation. In Cartesian coordinates the last term in
(53) can be written out explicitly using
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for simulations that do (Wadsley et al., 2008). The im-
portance of the conductivity term for treating contact
discontinuities was highlighted by Price (2008), explain-
ing the poor results found by Agertz et al. (2007) in
SPH simulations of Kelvin-Helmholtz instabilities run
across contact discontinuities (discussed further in Sec-
tion 5.1.4). With (44), we have found there is no need
for further switches to reduce conductivity (e.g. Price
2004; Price & Monaghan 2005; Valdarnini 2016), since
the e↵ective thermal conductivity  is second order in
the smoothing length (/ h

2). Phantom therefore uses
↵u = 1 by default in (42) and we have not yet found a
situation where this leads to excess smoothing.

It may be readily shown that the total energy remains
conserved in the presence of dissipation by combining
(42) with the corresponding dissipative terms in (34).
The contribution to the entropy from both viscosity and
conductivity is also positive definite (see the appendix
in Price & Monaghan 2004b for the mathematical proof
in the case of conductivity).

2.2.9 Shock detection

The standard approach to reducing dissipation in SPH
away from shocks for the last 15 years has been the
switch proposed by Morris & Monaghan (1997), where
the dimensionless viscosity parameter ↵ is evolved for
each particle a according to

d↵a

dt
= max(�r · va, 0) �

(↵a � ↵min)

⌧a
, (45)

where ⌧ ⌘ h/ (�decayvsig) and �decay = 0.1 by default.
We set vsig in the decay time equal to the sound speed
to avoid the need to store d↵/dt, since r · v is already
stored in order to compute (4). This is the switch used
for numerous turbulence applications with Phantom
(e.g. Price & Federrath, 2010; Price et al., 2011; Tricco
et al., 2016b) where it is important to minimise nu-
merical dissipation in order to maximise the Reynolds
number (e.g. Valdarnini, 2011; Price, 2012b).

More recently, Cullen & Dehnen (2010) proposed a
more advanced switch using the time derivative of the
velocity divergence. A modified version based on the
gradient of the velocity divergence was also proposed
by Read & Hayfield (2012). We implement a variation
on the Cullen & Dehnen (2010) switch, using a shock
indicator of the form

Aa = ⇠a max


�

d

dt
(r · va), 0

�
, (46)

where

⇠ =
|r · v|

2

|r · v|2 + |r ⇥ v|2
(47)

is a modification of the Balsara (1995) viscosity limiter
for shear flows. We use this to set ↵ according to

↵loc,a = min

✓
10h2

aAa

c2s,a

,↵max

◆
, (48)

where cs is the sound speed and ↵max = 1. We use
cs in the expression for ↵loc also for magnetohydrody-
namics (Section 2.10) since we found using the magne-
tosonic speed led to a poor treatment of MHD shocks.
If ↵loc,a > ↵a we set ↵a = ↵loc,a, otherwise we evolve
↵a according to

d↵a

dt
= �

(↵a � ↵loc,a)

⌧a
, (49)

where ⌧ is defined as in the Morris & Monaghan (1997)
version, above. We evolve ↵ in the predictor part of the
integrator only, i.e. with a first order time integration, to
avoid complications in the corrector step. However, we
perform the predictor step implicitly using a backward
Euler method, i.e.

↵
n+1
a =

↵
n
a + ↵loc,a�t/⌧a

1 + �t/⌧a
, (50)

which ensures that the decay is stable regardless of
the timestep (we do this for the Morris & Monaghan
method also).

We use the method outlined in Appendix B3 of Cullen
& Dehnen (2010) to compute d(r · va)/dt. That is, we
first compute the gradient tensors of the velocity, v, and
acceleration, a (used from the previous timestep), dur-
ing the density loop using an SPH derivative operator
that is exact to linear order, that is, with the matrix
correction outlined in Price (2004, 2012a), namely
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where
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and repeated tensor indices imply summation. Finally,
we construct the time derivative of the velocity diver-
gence according to

d

dt

✓
@v

i
a

@xi
a

◆
=

@a
i
a

@xi
a

�
@v

i
a

@x
j
a

@v
j
a

@xi
a

, (53)

where, as previously, repeated i and j indices imply
summation. In Cartesian coordinates the last term in
(53) can be written out explicitly using
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Figure 14. Density as a function of radius in the Sedov blast wave problem at three resolutions. All particles are placed initially on
a closepacked lattice, are evolved using individual timesteps and we use the quintic kernel. The analytic solution is given by the solid
line, and the bottom panels show the residuals compared to the analytical solution.
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Figure 15. Results of the well-posed Kelvin-Helmholtz instability test from Robertson et al. (2010), shown at a resolution of (from
top to bottom) 64⇥ 74⇥ 12, 128⇥ 148⇥ 12 and 256⇥ 296⇥ 12 equal mass SPH particles. We use stretch mapping (Section 3.2) to
achieve the initial density profile, consisting of a 2:1 density jump with a smoothed transition.
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2.2.10 Cooling

The cooling term ⇤cool can be set either from detailed
chemical calculations (Section 2.14.1) or, for discs, by
the simple ‘�-cooling’ prescription of Gammie (2001),
namely

⇤cool =
⇢u

tcool
, (55)

where

tcool =
⌦(R)

�cool
, (56)

with �cool an input parameter to the code specifying
the cooling timescale in terms of the local orbital time.
We compute ⌦ in (56) using ⌦ ⌘ 1/(x2 + y

2 + z
2)3/2,

i.e. assuming Keplerian rotation around a central object
with mass equal to unity, with G = 1 in code units.

2.2.11 Conservation of linear and angular
momentum

The total linear momentum is given by

P =
X

a

mava, (57)

such that conservation of momentum corresponds to

dP

dt
=

X

a

ma
dva

dt
= 0. (58)

Inserting our discrete equation (34), we find
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dt
=

X
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mamb
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ab

⇢2a⌦a
raWab(ha)
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b
ab

⇢
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b⌦b

raWab(hb)

�
= 0. (59)

where, as for the total energy (Section 2.2.6), the dou-
ble summation is zero because of the antisymmetry of
the kernel gradient. The same argument applies to the
conservation of angular momentum,

X

a

mara ⇥ va, (60)

(see e.g. Price 2012a for a detailed proof). As with to-
tal energy, this means linear and angular momentum
are exactly conserved by our SPH scheme to the accu-
racy with which they are conserved by the timestepping
scheme.

In Phantom, linear and angular momentum are
both conserved to round-o↵ error (typically ⇠ 10�16 in
double precision) with global timestepping, but exact
conservation is violated when using individual particle
timesteps or when using the kd-tree to compute grav-
itational forces. The magnitude of these quantities, as
well as the total energy and the individual components
of energy (kinetic, internal, potential and magnetic),

should thus be monitored by the user at runtime. Typ-
ically with individual timesteps one should expect en-
ergy conservation to �E/E ⇠ 10�3 and linear and an-
gular momentum conservation to ⇠ 10�6 with default
code settings. The code execution is aborted if conser-
vation errors exceed 10%.

2.3 Time integration

2.3.1 Timestepping algorithm

We integrate the equations of motion using a generalisa-
tion of the Leapfrog integrator which is reversible in the
case of both velocity dependent forces and derivatives
which depend on the velocity field. The basic integrator
is the Leapfrog method in ‘Kick-Drift-Kick’ or ‘Veloc-
ity Verlet’ form (Verlet, 1967), where the positions and
velocities of particles are updated from time t

n to t
n+1

according to

vn+ 1
2 = vn +

1

2
�tan

, (61)

rn+1 = rn + �tvn+ 1
2 , (62)

an+1 = a(rn+1), (63)

vn+1 = vn+ 1
2 +

1

2
�tan+1

, (64)

where �t ⌘ t
n+1

� t
n. This is identical to the formula-

tion of Leapfrog used in other astrophysical SPH codes
(e.g. Springel, 2005; Wadsley et al., 2004). The Ver-
let scheme, being both reversible and symplectic (e.g.
Hairer et al., 2003), preserves the Hamiltonian nature
of the SPH algorithm (e.g. Gingold & Monaghan, 1982b;
Monaghan & Price, 2001). In particular, both linear and
angular momentum are exactly conserved, there is no
long-term energy drift, and phase space volume is con-
served (e.g. for orbital dynamics). In SPH this is com-
plicated by velocity-dependent terms in the acceleration
from the shock-capturing dissipation terms. In this case
the corrector step, (64), becomes implicit. The approach
we take is to notice that these terms are not usually
dominant over the position-dependent terms. Hence we
use a first-order prediction of the velocity, as follows

vn+ 1
2 = vn +

1

2
�tan

, (65)

rn+1 = rn + �tvn+ 1
2 , (66)

v⇤ = vn+ 1
2 +

1

2
�tan

, (67)

an+1 = a(rn+1
,v⇤), (68)

vn+1 = v⇤ +
1

2
�t

⇥
an+1

� an
⇤
. (69)

At the end of the step we then check if the error in
the first order prediction is less than some tolerance ✏
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Figure 54. Magnetically propelled jet of material bursting out of the first hydrostatic core phase of star formation.

Figure 54 shows the evolution of a magnetised, colli-
mated bipolar jet of material, similar to that given by
Price et al. (2012). Infalling material is ejected due to
the wind up of the toroidal magnetic field. The sink
particle is inserted at t ⇡ 25 400 yrs, shortly before the
jet begins. The jet continues to be driven while material
continues to infall, lasting for several thousand years.

6.4 Galaxy merger

To provide a realistic test of the collisionless N -body
and SPH implementations, we performed a comparison
study where we modelled a galaxy merger, comparing
the Phantom results with the Hydra N -body/SPH
code (Couchman et al., 1995; Thacker & Couchman,
2006). This test requires gravity along with multiple
particle types — gas, stars and dark matter. Gas in-
teracts hydrodynamically only with itself, and all three
particle types interact with each other via gravity (c.f.
Table A1).

To create a Milky Way-like galaxy, we used Galac-
tICs (Kuijken & Dubinski, 1995b; Widrow & Dubinski,
2005; Widrow et al., 2008) to first create a galaxy con-

sisting of a stellar bulge, stellar disc and a dark matter
halo. To create the gas disc, the stellar disc was then du-
plicated and reflected in the x = y plane to avoid coin-
cidence with the star particles. Ten percent of the total
stellar mass was then removed and given to the gas disc.
Although the gas disc initially has a scale height larger
than physically motivated, this will quickly relax into a
disc that physically resembles the Milky Way. Next, we
added a hot gas halo embedded within the dark matter
halo. The hot gas halo has an observationally motivated
�-profile (e.g. Cavaliere & Fusco-Femiano, 1976) and a
temperature profile given by Kaufmann et al. (2007);
the mass of the hot gas halo is removed from the dark
matter particles to conserve total halo mass. The mass
of each component, as well as particle numbers and par-
ticle masses are given in Table 5. To model the major
merger, the galaxy is duplicated and the two galaxies
are placed 70 kpc apart on a parabolic trajectory. These
initial conditions are identical to those used in Wurster
& Thacker (2013b,a). To simplify the comparison, there
is no star formation recipe, no black holes and no feed-
back from active galactic nuclei (there are currently no
plans to implement cosmological recipes in Phantom).
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where the semi-major axis, a, decays according to

a(t) = a0
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. (92)

The initial separation is a0, with ⌧ defined as the time
to merger, given by the usual expression (e.g. Lodato
et al., 2009)
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The angle ✓ is defined using
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Inserting the expression for a and integrating gives (Ce-
rioli et al., 2016)
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The positions of the binary, r1 and r2, can be inserted
into (89) to obtain the binary potential, with the ac-
celeration as given in (90). The above can be used as a
simple example of a time-dependent external potential.

2.4.4 Galactic potentials

We implement a range of external forces represent-
ing various galactic potentials, as used in Pettitt
et al. (2014). These include arm, bar, halo, disc and
spheroidal components. We refer the reader to the pa-
per above for the actual forms of the potentials.

For the non-axisymmetric potentials a few impor-
tant parameters that determine the morphology can be
changed at run-time rather than compile time. These
include the pattern speed, arm number, arm pitch an-
gle and bar axis lengths (where applicable). In the case
of non-axisymmetric components, the user should be
aware that some will add mass to the system, whereas
others simply perturb the galactic disc. These potentials
can be used for any galactic system, but the various de-
fault scale lengths and masses are chosen to match the
Milky Way’s rotation curve (Sofue, 2012).

The most basic potential in Phantom is a simple
logarithmic potential from Binney & Tremaine (1987),
which allows for the reproduction of a purely flat ro-
tation curve with steep decrease at the galactic centre,
and approximates the halo, bulge and disc contribu-
tions. Also included is the standard flattened disc po-
tential of Miyamoto-Nagai (Miyamoto & Nagai, 1975)
and an exponential profile disc, specifically the form
from Khoperskov et al. (2013). Several spheroidal com-
ponents are available, including the potentials of Plum-
mer (1911), Hernquist (1990) and Hubble (1930). These

can be used generally for bulges and halos if given suit-
able mass and scale-lengths. We also include a few halo-
specific profiles; the NFW (Navarro et al., 1996), Bege-
man et al. (1991), Caldwell & Ostriker (1981) and the
Allen & Santillan (1991) potentials.

The arm potentials include some of the more compli-
cated profiles. The first is the potential of Cox & Gómez
(2002), which is a relatively straightforward superpo-
sition of three sinusoidal-based spiral components to
damp the potential “troughs” in the inter-arm minima.
The other spiral potential is from Pichardo et al. (2003),
and is more complicated. Here the arms are constructed
from a superposition of oblate spheroids whose loci are
placed along a standard logarithmic spiral. As the force
from this potential is computationally expensive it is
prudent to pre-compute a grid of potential/force and
read it at run time. The python code to generate the
appropriate grid files is distributed with the code.

Finally, the bar components: We include the bar po-
tentials of Dehnen (2000a), Wada & Koda (2001), the
“S” shaped bar of Vogt & Letelier (2011), both biaxial
and triaxial versions provided in Long & Murali (1992),
and the boxy-bulge bar of Wang et al. (2012). This fi-
nal bar is contains both a small inner non-axisymmetric
bulge and longer bar component, with the forces calcu-
lated by use of Hernquist-Ostriker expansion coe�cients
of the bar density field. Phantom contains the coe�-
cients for several di↵erent forms of this bar potential.

2.4.5 Lense-Thirring precession

Lense-Thirring precession (Lense & Thirring, 1918)
from a spinning black hole is implemented in a
Post-Newtonian approximation following Nelson & Pa-
paloizou (2000), which has been used in Nixon et al.
(2012b) and Nealon et al. (2015, 2016). In this case the
external acceleration consists of a point mass potential
(Section 2.4.1) and the Lense-Thirring term,

aext,a = �r�a + va ⇥ ⌦p,a, (97)

where �a is given by (86) and va ⇥ ⌦p,a is the gravito-
magnetic acceleration. A dipole approximation is used,
yielding

⌦p,a ⌘
2S

|ra|3
�

6(S · ra)ra
|ra|5

, (98)

with S = aspin(GM)2k/c3, where k is a unit vector in
the direction of the black hole spin. When using the
Lense-Thirring force, geometric units are assumed such
that G = M = c = 1, as described in Section 2.2.3, but
with the additional constraints on the unit system from
M and c.

Since in this case the external force depends on ve-
locity, it cannot be implemented directly into Leapfrog.
The method we employ to achieve this is simpler than
those proposed elsewhere (c.f. attempts by Quinn et al.
2010 and Rein & Tremaine 2011 to adapt the Leapfrog
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where the semi-major axis, a, decays according to

a(t) = a0
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The initial separation is a0, with ⌧ defined as the time
to merger, given by the usual expression (e.g. Lodato
et al., 2009)
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Inserting the expression for a and integrating gives (Ce-
rioli et al., 2016)
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The positions of the binary, r1 and r2, can be inserted
into (89) to obtain the binary potential, with the ac-
celeration as given in (90). The above can be used as a
simple example of a time-dependent external potential.

2.4.4 Galactic potentials

We implement a range of external forces represent-
ing various galactic potentials, as used in Pettitt
et al. (2014). These include arm, bar, halo, disc and
spheroidal components. We refer the reader to the pa-
per above for the actual forms of the potentials.

For the non-axisymmetric potentials a few impor-
tant parameters that determine the morphology can be
changed at run-time rather than compile time. These
include the pattern speed, arm number, arm pitch an-
gle and bar axis lengths (where applicable). In the case
of non-axisymmetric components, the user should be
aware that some will add mass to the system, whereas
others simply perturb the galactic disc. These potentials
can be used for any galactic system, but the various de-
fault scale lengths and masses are chosen to match the
Milky Way’s rotation curve (Sofue, 2012).

The most basic potential in Phantom is a simple
logarithmic potential from Binney & Tremaine (1987),
which allows for the reproduction of a purely flat ro-
tation curve with steep decrease at the galactic centre,
and approximates the halo, bulge and disc contribu-
tions. Also included is the standard flattened disc po-
tential of Miyamoto-Nagai (Miyamoto & Nagai, 1975)
and an exponential profile disc, specifically the form
from Khoperskov et al. (2013). Several spheroidal com-
ponents are available, including the potentials of Plum-
mer (1911), Hernquist (1990) and Hubble (1930). These

can be used generally for bulges and halos if given suit-
able mass and scale-lengths. We also include a few halo-
specific profiles; the NFW (Navarro et al., 1996), Bege-
man et al. (1991), Caldwell & Ostriker (1981) and the
Allen & Santillan (1991) potentials.

The arm potentials include some of the more compli-
cated profiles. The first is the potential of Cox & Gómez
(2002), which is a relatively straightforward superpo-
sition of three sinusoidal-based spiral components to
damp the potential “troughs” in the inter-arm minima.
The other spiral potential is from Pichardo et al. (2003),
and is more complicated. Here the arms are constructed
from a superposition of oblate spheroids whose loci are
placed along a standard logarithmic spiral. As the force
from this potential is computationally expensive it is
prudent to pre-compute a grid of potential/force and
read it at run time. The python code to generate the
appropriate grid files is distributed with the code.

Finally, the bar components: We include the bar po-
tentials of Dehnen (2000a), Wada & Koda (2001), the
“S” shaped bar of Vogt & Letelier (2011), both biaxial
and triaxial versions provided in Long & Murali (1992),
and the boxy-bulge bar of Wang et al. (2012). This fi-
nal bar is contains both a small inner non-axisymmetric
bulge and longer bar component, with the forces calcu-
lated by use of Hernquist-Ostriker expansion coe�cients
of the bar density field. Phantom contains the coe�-
cients for several di↵erent forms of this bar potential.

2.4.5 Lense-Thirring precession

Lense-Thirring precession (Lense & Thirring, 1918)
from a spinning black hole is implemented in a
Post-Newtonian approximation following Nelson & Pa-
paloizou (2000), which has been used in Nixon et al.
(2012b) and Nealon et al. (2015, 2016). In this case the
external acceleration consists of a point mass potential
(Section 2.4.1) and the Lense-Thirring term,

aext,a = �r�a + va ⇥ ⌦p,a, (97)

where �a is given by (86) and va ⇥ ⌦p,a is the gravito-
magnetic acceleration. A dipole approximation is used,
yielding
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, (98)

with S = aspin(GM)2k/c3, where k is a unit vector in
the direction of the black hole spin. When using the
Lense-Thirring force, geometric units are assumed such
that G = M = c = 1, as described in Section 2.2.3, but
with the additional constraints on the unit system from
M and c.

Since in this case the external force depends on ve-
locity, it cannot be implemented directly into Leapfrog.
The method we employ to achieve this is simpler than
those proposed elsewhere (c.f. attempts by Quinn et al.
2010 and Rein & Tremaine 2011 to adapt the Leapfrog
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Simulating dust and gas

A sound wave in a mixture with small grains:
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From a two fluid model for dust and gas mixtures...

2 Laibe & Price

drag regimes (corresponding to small grains), we found two limi-
tations which lead to a prohibitive computational cost: 1) the dras-
tically small time steps required for the numerical stability of ex-
plicit schemes or the complexity of the implicit schemes involved,
and less trivially 2) a high spatial resolution required to resolve the
differential velocity between the gas and the dust in order to simu-
late the correct physical dissipation rate. The latter occurs because
even if the differential velocity between the fluids is damped after
a few stopping times ts, the gas pressure causes a small spatial de-
phasing between the gas and dust. When the resolution is too low
(∆x ! tscs, see LP12a), the dephasing from numerical simulations
is artificially too large and the energy is over-dissipated.

This means that it is essentially impossible to simulate small
grains accurately using the two fluid approach with standard flu-
ids codes, since both infinitely small time steps and an infinitely
large spatial resolution are required in the limit ts → 0. Worse still,
this limit corresponds to the rather obvious limit in which the two
fluids are perfectly coupled and move precisely as a single fluid
(albeit with a sound speed modified by the dust to gas ratio). For
astrophysics this means that it is not currently possible to simulate
the small, micron to cm sized grains accurately with any existing
dust-gas code, and certainly not possible to simulate both small and
large (metre-to-planetesimal sized) grains with the same technique.

In this paper, we show how the equations describing gas-dust
mixtures can be reformulated to represent a single fluid moving
with the barycentre of the mixture, leading to a set of equations only
slightly modified from the usual equations of gas dynamics, with
additional evolution equations for the differential velocity and the
dust-to-gas ratio. This approach, though initially developed with
the large drag/small grain regime in mind, turns out to be both gen-
eral and elegant, since the important physical quantities of the mix-
ture are computed directly, avoiding all of the artificial complica-
tions which arise in the two-fluid treatment.

The paper is structured as follows: The equations for the evo-
lution of the single fluid are derived in Sec. 2. This set of equations
is completely general and can be used to simulate both large and
small grains. In Sec. 3, we show how they can be further simpli-
fied in the specific limit of small grains and subsonic differential
motion, leading to the standard equations of gas dynamics (with a
modified sound speed), coupled with an advection-diffusion equa-
tion for the dust-to-gas ratio. In Sec. 4 we demonstrate that the
main physical effects associated with dust, including linear waves,
shocks and the streaming instability, can all be captured with this
simplified approach, and give the appropriate criterion for the use
of the simplified formulation in numerical codes.

2 SINGLE FLUID MODEL

2.1 Two fluid equations

In astrophysical problems, dust and gas mixtures are usually treated
by two continuous phases that interact via a drag term (see e.g.
LP12a for a particular implementation). The dust fluid is treated as
a pressureless fluid. Using explicit notations, the equations for the

conservation of density and momentum are therefore given by:

∂ρg

∂t
+ ∇.
(

ρgvg
)

= 0, (1)

∂ρd

∂t
+ ∇. (ρdvd) = 0, (2)

ρg

(

∂vg
∂t
+ vg.∇vg

)

= ρgf + K(vd − vg) − ∇Pg, (3)

ρd

(

∂vd
∂t
+ vd.∇vd

)

= ρdf − K(vd − vg), (4)

where K is the drag coefficient which is a function of the local gas
and dust parameters, as well as the differential velocity between
the fluids (see LP12b for an extensive discussion of drag regimes).
In the following, we will denote cs the gas sound speed such as
δPg = c2sδρg and ts, the typical drag stopping time given by

ts ≡
ρdρg

K
(

ρg + ρd
) . (5)

Some studies adopt tstop = ρd/K for the stopping time. We use the
definition given by Eq. 5 since it is more physically relevant as we
will see hereafter. Qualitatively, two limiting behaviours occur for
the mixture’s evolution, depending on the value of ts compared to
the other physical typical time. If ts is large (weak drag, i.e. large
grains in astrophysics), the drag dissipate slowly the differential
kinetic energy between the phases and is essentially perturbative.
From a numerical point of view, drag terms can be integrated by a
straightforward explicit integration. If ts is small (strong drag, i.e.
small grains in astrophysics), the drag controls the evolution of the
mixture since momentum between the two phases is almost instan-
taneously exchanged. The behaviour of the mixture becomes less
intuitive. In LP12a, we have illustrated the behaviour of a gas and
dust mixture at strong drag regimes with the dustywave problem.
After a typical time ts, the initial differential velocity between the
fluids is damped and the barycentre of the fluid propagates with
a modified sound speed c̃s (see below, Eq. 43). However, since ts
remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the
gas is given by
∂u
∂t
+ (vg · ∇)u = −

Pg
ρg
(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, Eqs. 1 – 4 and 6 can be reformulated as
a single fluid, moving with the barycentric velocity,

v ≡
ρgvg + ρdvd
ρg + ρd

, (7)

and evolving the differential velocity between the two phases, ∆v,
defined according to

∆v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution
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drag regimes (corresponding to small grains), we found two limi-
tations which lead to a prohibitive computational cost: 1) the dras-
tically small time steps required for the numerical stability of ex-
plicit schemes or the complexity of the implicit schemes involved,
and less trivially 2) a high spatial resolution required to resolve the
differential velocity between the gas and the dust in order to simu-
late the correct physical dissipation rate. The latter occurs because
even if the differential velocity between the fluids is damped after
a few stopping times ts, the gas pressure causes a small spatial de-
phasing between the gas and dust. When the resolution is too low
(∆x ! tscs, see LP12a), the dephasing from numerical simulations
is artificially too large and the energy is over-dissipated.

This means that it is essentially impossible to simulate small
grains accurately using the two fluid approach with standard flu-
ids codes, since both infinitely small time steps and an infinitely
large spatial resolution are required in the limit ts → 0. Worse still,
this limit corresponds to the rather obvious limit in which the two
fluids are perfectly coupled and move precisely as a single fluid
(albeit with a sound speed modified by the dust to gas ratio). For
astrophysics this means that it is not currently possible to simulate
the small, micron to cm sized grains accurately with any existing
dust-gas code, and certainly not possible to simulate both small and
large (metre-to-planetesimal sized) grains with the same technique.

In this paper, we show how the equations describing gas-dust
mixtures can be reformulated to represent a single fluid moving
with the barycentre of the mixture, leading to a set of equations only
slightly modified from the usual equations of gas dynamics, with
additional evolution equations for the differential velocity and the
dust-to-gas ratio. This approach, though initially developed with
the large drag/small grain regime in mind, turns out to be both gen-
eral and elegant, since the important physical quantities of the mix-
ture are computed directly, avoiding all of the artificial complica-
tions which arise in the two-fluid treatment.

The paper is structured as follows: The equations for the evo-
lution of the single fluid are derived in Sec. 2. This set of equations
is completely general and can be used to simulate both large and
small grains. In Sec. 3, we show how they can be further simpli-
fied in the specific limit of small grains and subsonic differential
motion, leading to the standard equations of gas dynamics (with a
modified sound speed), coupled with an advection-diffusion equa-
tion for the dust-to-gas ratio. In Sec. 4 we demonstrate that the
main physical effects associated with dust, including linear waves,
shocks and the streaming instability, can all be captured with this
simplified approach, and give the appropriate criterion for the use
of the simplified formulation in numerical codes.

2 SINGLE FLUID MODEL

2.1 Two fluid equations

In astrophysical problems, dust and gas mixtures are usually treated
by two continuous phases that interact via a drag term (see e.g.
LP12a for a particular implementation). The dust fluid is treated as
a pressureless fluid. Using explicit notations, the equations for the

conservation of density and momentum are therefore given by:

∂ρg

∂t
+ ∇.
(

ρgvg
)

= 0, (1)

∂ρd

∂t
+ ∇. (ρdvd) = 0, (2)

ρg

(

∂vg
∂t
+ vg.∇vg

)

= ρgf + K(vd − vg) − ∇Pg, (3)

ρd

(

∂vd
∂t
+ vd.∇vd

)

= ρdf − K(vd − vg), (4)

where K is the drag coefficient which is a function of the local gas
and dust parameters, as well as the differential velocity between
the fluids (see LP12b for an extensive discussion of drag regimes).
In the following, we will denote cs the gas sound speed such as
δPg = c2sδρg and ts, the typical drag stopping time given by

ts ≡
ρdρg

K
(

ρg + ρd
) . (5)

Some studies adopt tstop = ρd/K for the stopping time. We use the
definition given by Eq. 5 since it is more physically relevant as we
will see hereafter. Qualitatively, two limiting behaviours occur for
the mixture’s evolution, depending on the value of ts compared to
the other physical typical time. If ts is large (weak drag, i.e. large
grains in astrophysics), the drag dissipate slowly the differential
kinetic energy between the phases and is essentially perturbative.
From a numerical point of view, drag terms can be integrated by a
straightforward explicit integration. If ts is small (strong drag, i.e.
small grains in astrophysics), the drag controls the evolution of the
mixture since momentum between the two phases is almost instan-
taneously exchanged. The behaviour of the mixture becomes less
intuitive. In LP12a, we have illustrated the behaviour of a gas and
dust mixture at strong drag regimes with the dustywave problem.
After a typical time ts, the initial differential velocity between the
fluids is damped and the barycentre of the fluid propagates with
a modified sound speed c̃s (see below, Eq. 43). However, since ts
remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the
gas is given by
∂u
∂t
+ (vg · ∇)u = −

Pg
ρg
(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, Eqs. 1 – 4 and 6 can be reformulated as
a single fluid, moving with the barycentric velocity,

v ≡
ρgvg + ρdvd
ρg + ρd

, (7)

and evolving the differential velocity between the two phases, ∆v,
defined according to

∆v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution

Two fluids equations: mass, momentum and energy conservation:
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drag regimes (corresponding to small grains), we found two limi-
tations which lead to a prohibitive computational cost: 1) the dras-
tically small time steps required for the numerical stability of ex-
plicit schemes or the complexity of the implicit schemes involved,
and less trivially 2) a high spatial resolution required to resolve the
differential velocity between the gas and the dust in order to simu-
late the correct physical dissipation rate. The latter occurs because
even if the differential velocity between the fluids is damped after
a few stopping times ts, the gas pressure causes a small spatial de-
phasing between the gas and dust. When the resolution is too low
(∆x ! tscs, see LP12a), the dephasing from numerical simulations
is artificially too large and the energy is over-dissipated.

This means that it is essentially impossible to simulate small
grains accurately using the two fluid approach with standard flu-
ids codes, since both infinitely small time steps and an infinitely
large spatial resolution are required in the limit ts → 0. Worse still,
this limit corresponds to the rather obvious limit in which the two
fluids are perfectly coupled and move precisely as a single fluid
(albeit with a sound speed modified by the dust to gas ratio). For
astrophysics this means that it is not currently possible to simulate
the small, micron to cm sized grains accurately with any existing
dust-gas code, and certainly not possible to simulate both small and
large (metre-to-planetesimal sized) grains with the same technique.

In this paper, we show how the equations describing gas-dust
mixtures can be reformulated to represent a single fluid moving
with the barycentre of the mixture, leading to a set of equations only
slightly modified from the usual equations of gas dynamics, with
additional evolution equations for the differential velocity and the
dust-to-gas ratio. This approach, though initially developed with
the large drag/small grain regime in mind, turns out to be both gen-
eral and elegant, since the important physical quantities of the mix-
ture are computed directly, avoiding all of the artificial complica-
tions which arise in the two-fluid treatment.

The paper is structured as follows: The equations for the evo-
lution of the single fluid are derived in Sec. 2. This set of equations
is completely general and can be used to simulate both large and
small grains. In Sec. 3, we show how they can be further simpli-
fied in the specific limit of small grains and subsonic differential
motion, leading to the standard equations of gas dynamics (with a
modified sound speed), coupled with an advection-diffusion equa-
tion for the dust-to-gas ratio. In Sec. 4 we demonstrate that the
main physical effects associated with dust, including linear waves,
shocks and the streaming instability, can all be captured with this
simplified approach, and give the appropriate criterion for the use
of the simplified formulation in numerical codes.

2 SINGLE FLUID MODEL

2.1 Two fluid equations

In astrophysical problems, dust and gas mixtures are usually treated
by two continuous phases that interact via a drag term (see e.g.
LP12a for a particular implementation). The dust fluid is treated as
a pressureless fluid. Using explicit notations, the equations for the

conservation of density and momentum are therefore given by:

∂ρg

∂t
+ ∇.
(

ρgvg
)

= 0, (1)

∂ρd

∂t
+ ∇. (ρdvd) = 0, (2)

ρg

(

∂vg
∂t
+ vg.∇vg

)

= ρgf + K(vd − vg) − ∇Pg, (3)

ρd

(

∂vd
∂t
+ vd.∇vd

)

= ρdf − K(vd − vg), (4)

where K is the drag coefficient which is a function of the local gas
and dust parameters, as well as the differential velocity between
the fluids (see LP12b for an extensive discussion of drag regimes).
In the following, we will denote cs the gas sound speed such as
δPg = c2sδρg and ts, the typical drag stopping time given by

ts ≡
ρdρg

K
(

ρg + ρd
) . (5)

Some studies adopt tstop = ρd/K for the stopping time. We use the
definition given by Eq. 5 since it is more physically relevant as we
will see hereafter. Qualitatively, two limiting behaviours occur for
the mixture’s evolution, depending on the value of ts compared to
the other physical typical time. If ts is large (weak drag, i.e. large
grains in astrophysics), the drag dissipate slowly the differential
kinetic energy between the phases and is essentially perturbative.
From a numerical point of view, drag terms can be integrated by a
straightforward explicit integration. If ts is small (strong drag, i.e.
small grains in astrophysics), the drag controls the evolution of the
mixture since momentum between the two phases is almost instan-
taneously exchanged. The behaviour of the mixture becomes less
intuitive. In LP12a, we have illustrated the behaviour of a gas and
dust mixture at strong drag regimes with the dustywave problem.
After a typical time ts, the initial differential velocity between the
fluids is damped and the barycentre of the fluid propagates with
a modified sound speed c̃s (see below, Eq. 43). However, since ts
remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the
gas is given by
∂u
∂t
+ (vg · ∇)u = −

Pg
ρg
(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, Eqs. 1 – 4 and 6 can be reformulated as
a single fluid, moving with the barycentric velocity,

v ≡
ρgvg + ρdvd
ρg + ρd

, (7)

and evolving the differential velocity between the two phases, ∆v,
defined according to

∆v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution
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drag regimes (corresponding to small grains), we found two limi-
tations which lead to a prohibitive computational cost: 1) the dras-
tically small time steps required for the numerical stability of ex-
plicit schemes or the complexity of the implicit schemes involved,
and less trivially 2) a high spatial resolution required to resolve the
differential velocity between the gas and the dust in order to simu-
late the correct physical dissipation rate. The latter occurs because
even if the differential velocity between the fluids is damped after
a few stopping times ts, the gas pressure causes a small spatial de-
phasing between the gas and dust. When the resolution is too low
(∆x ! tscs, see LP12a), the dephasing from numerical simulations
is artificially too large and the energy is over-dissipated.

This means that it is essentially impossible to simulate small
grains accurately using the two fluid approach with standard flu-
ids codes, since both infinitely small time steps and an infinitely
large spatial resolution are required in the limit ts → 0. Worse still,
this limit corresponds to the rather obvious limit in which the two
fluids are perfectly coupled and move precisely as a single fluid
(albeit with a sound speed modified by the dust to gas ratio). For
astrophysics this means that it is not currently possible to simulate
the small, micron to cm sized grains accurately with any existing
dust-gas code, and certainly not possible to simulate both small and
large (metre-to-planetesimal sized) grains with the same technique.

In this paper, we show how the equations describing gas-dust
mixtures can be reformulated to represent a single fluid moving
with the barycentre of the mixture, leading to a set of equations only
slightly modified from the usual equations of gas dynamics, with
additional evolution equations for the differential velocity and the
dust-to-gas ratio. This approach, though initially developed with
the large drag/small grain regime in mind, turns out to be both gen-
eral and elegant, since the important physical quantities of the mix-
ture are computed directly, avoiding all of the artificial complica-
tions which arise in the two-fluid treatment.

The paper is structured as follows: The equations for the evo-
lution of the single fluid are derived in Sec. 2. This set of equations
is completely general and can be used to simulate both large and
small grains. In Sec. 3, we show how they can be further simpli-
fied in the specific limit of small grains and subsonic differential
motion, leading to the standard equations of gas dynamics (with a
modified sound speed), coupled with an advection-diffusion equa-
tion for the dust-to-gas ratio. In Sec. 4 we demonstrate that the
main physical effects associated with dust, including linear waves,
shocks and the streaming instability, can all be captured with this
simplified approach, and give the appropriate criterion for the use
of the simplified formulation in numerical codes.

2 SINGLE FLUID MODEL

2.1 Two fluid equations

In astrophysical problems, dust and gas mixtures are usually treated
by two continuous phases that interact via a drag term (see e.g.
LP12a for a particular implementation). The dust fluid is treated as
a pressureless fluid. Using explicit notations, the equations for the

conservation of density and momentum are therefore given by:

∂ρg

∂t
+ ∇.
(

ρgvg
)

= 0, (1)

∂ρd

∂t
+ ∇. (ρdvd) = 0, (2)

ρg

(

∂vg
∂t
+ vg.∇vg

)

= ρgf + K(vd − vg) − ∇Pg, (3)

ρd

(

∂vd
∂t
+ vd.∇vd

)

= ρdf − K(vd − vg), (4)

where K is the drag coefficient which is a function of the local gas
and dust parameters, as well as the differential velocity between
the fluids (see LP12b for an extensive discussion of drag regimes).
In the following, we will denote cs the gas sound speed such as
δPg = c2sδρg and ts, the typical drag stopping time given by

ts ≡
ρdρg

K
(

ρg + ρd
) . (5)

Some studies adopt tstop = ρd/K for the stopping time. We use the
definition given by Eq. 5 since it is more physically relevant as we
will see hereafter. Qualitatively, two limiting behaviours occur for
the mixture’s evolution, depending on the value of ts compared to
the other physical typical time. If ts is large (weak drag, i.e. large
grains in astrophysics), the drag dissipate slowly the differential
kinetic energy between the phases and is essentially perturbative.
From a numerical point of view, drag terms can be integrated by a
straightforward explicit integration. If ts is small (strong drag, i.e.
small grains in astrophysics), the drag controls the evolution of the
mixture since momentum between the two phases is almost instan-
taneously exchanged. The behaviour of the mixture becomes less
intuitive. In LP12a, we have illustrated the behaviour of a gas and
dust mixture at strong drag regimes with the dustywave problem.
After a typical time ts, the initial differential velocity between the
fluids is damped and the barycentre of the fluid propagates with
a modified sound speed c̃s (see below, Eq. 43). However, since ts
remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the
gas is given by
∂u
∂t
+ (vg · ∇)u = −

Pg
ρg
(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, Eqs. 1 – 4 and 6 can be reformulated as
a single fluid, moving with the barycentric velocity,

v ≡
ρgvg + ρdvd
ρg + ρd

, (7)

and evolving the differential velocity between the two phases, ∆v,
defined according to

∆v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution
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drag regimes (corresponding to small grains), we found two limi-
tations which lead to a prohibitive computational cost: 1) the dras-
tically small time steps required for the numerical stability of ex-
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2 SINGLE FLUID MODEL
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a pressureless fluid. Using explicit notations, the equations for the

conservation of density and momentum are therefore given by:
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= 0, (1)

∂ρd
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∂vd
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+ vd.∇vd
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= ρdf − K(vd − vg), (4)

where K is the drag coefficient which is a function of the local gas
and dust parameters, as well as the differential velocity between
the fluids (see LP12b for an extensive discussion of drag regimes).
In the following, we will denote cs the gas sound speed such as
δPg = c2sδρg and ts, the typical drag stopping time given by

ts ≡
ρdρg

K
(

ρg + ρd
) . (5)

Some studies adopt tstop = ρd/K for the stopping time. We use the
definition given by Eq. 5 since it is more physically relevant as we
will see hereafter. Qualitatively, two limiting behaviours occur for
the mixture’s evolution, depending on the value of ts compared to
the other physical typical time. If ts is large (weak drag, i.e. large
grains in astrophysics), the drag dissipate slowly the differential
kinetic energy between the phases and is essentially perturbative.
From a numerical point of view, drag terms can be integrated by a
straightforward explicit integration. If ts is small (strong drag, i.e.
small grains in astrophysics), the drag controls the evolution of the
mixture since momentum between the two phases is almost instan-
taneously exchanged. The behaviour of the mixture becomes less
intuitive. In LP12a, we have illustrated the behaviour of a gas and
dust mixture at strong drag regimes with the dustywave problem.
After a typical time ts, the initial differential velocity between the
fluids is damped and the barycentre of the fluid propagates with
a modified sound speed c̃s (see below, Eq. 43). However, since ts
remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the
gas is given by
∂u
∂t
+ (vg · ∇)u = −

Pg
ρg
(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, Eqs. 1 – 4 and 6 can be reformulated as
a single fluid, moving with the barycentric velocity,

v ≡
ρgvg + ρdvd
ρg + ρd

, (7)

and evolving the differential velocity between the two phases, ∆v,
defined according to

∆v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution
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In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust

to gas ratio ρd/ρg are the natural quantities to study the evolution

of the mixture. Using the identities

vg = v −
ρd

ρ
∆v, (9)

vd = v +
ρg

ρ
∆v, (10)

Eqs. 1 – 4 become

∂ρ

∂t
+ ∇ · (ρv) = 0, (11)

∂v

∂t
+ (v · ∇)v = f −

∇Pg

ρ
−

1

ρ
∇ ·

(

ρgρd

ρ
∆v∆v

)

, (12)

∂

∂t

(

ρd

ρg

)

+ v · ∇

(

ρd

ρg

)

= −
ρ

ρ2
g

∇ ·

(

ρgρd

ρ
∆v

)

, (13)

∂∆v

∂t
+ (v · ∇)∆v = −

∆v

ts

+
∇Pg

ρg

−(∆v · ∇)v +
1

2
∇

(

ρd − ρg

ρd + ρg

∆v2

)

. (14)

The evolution of the gas internal energy becomes

∂u

∂t
+ (v · ∇)u = −

Pg

ρg

(∇ · vg) +
ρd

ρ
(∆v · ∇) u +

ρd

ρ

∆v2

ts

, (15)

or equivalently, the entropy evolves according to

T
∂s

∂t
+ (v · ∇)s =

ρd

ρ
(∆v · ∇) s +

ρd

ρ

∆v2

ts

, (16)

where T is the local gas temperature. As expected, the differen-

tial velocity between the gas and the dust is a dissipative and irre-

versible source of entropy.

In the Lagrangian frame comoving with the fluid barycentre,

the equations can be simplified further using the total time deriva-

tive

d

dt
=
∂

∂t
+ v · ∇, (17)

such that the evolution of the position, X, of a fluid particle of this

single fluid is given by dX/dt = v. Thus Eqs. 11–14 simplify to

dρ

dt
= −ρ(∇ · v), (18)

dv

dt
= f −

∇Pg

ρ
−

1

ρ
∇ ·

(

ρgρd

ρ
∆v∆v

)

, (19)

d

dt

(

ρd

ρg

)

= −
ρ

ρ2
g

∇ ·

(

ρgρd

ρ
∆v

)

, (20)

d∆v

dt
= −

∆v

ts

+
∇Pg

ρg

− (∆v · ∇)v +
1

2
∇

(

ρd − ρg

ρd + ρg

∆v2

)

, (21)

while the internal energy equation is given by

du

dt
= −

Pg

ρg

(∇ · vg) +
ρd

ρ
(∆v · ∇) u +

ρd

ρ

∆v2

ts

. (22)

The specific entropy of the gas evolves according to

ds

dt
=
ρd

Tρ

∆v2

ts

, (23)

showing that the drag is the only source of entropy in the mixture.

Throughout this section, we have assumed that the volume oc-

cupied by the dust grains is negligible. For astrophysical applica-

tions — with micron to kilometre-sized grains in simulations on

AU or parsec scales — this is an extremely good approximation, but

it can be important in non-astrophysical problems (see Fan & Zhu

(1998) for various examples). For completeness we give the one

fluid equations generalised to finite volume grains in Appendix A.

It should be noted that while physical, the use of the dust-to-

gas ratio introduces an artificial singularity in the equations when

the mixture is only made of dust (ρg = 0). A convenient way to

overcome this difficulty is to use the dust fraction ϵ = ρd/ρ instead

of the dust-to-gas ratio. The gas and the dust densities are calculated

according to ρg = (1 − ϵ) ρ and ρd = ϵρ respectively. Eqs. 18 – 22

become:

dρ

dt
= −ρ(∇ · v), (24)

dϵ

dt
= −

1

ρ
∇ ·
[

ϵ (1 − ϵ) ρ∆v
]

, (25)

dv

dt
= −

∇Pg

ρ
−

1

ρ
∇ ·
[

ϵ (1 − ϵ) ρ∆v∆v
]

+ f, (26)

d∆v

dt
= −

∆v

ts

+
∇Pg

(1 − ϵ) ρ
− (∆v · ∇)v +

1

2
∇
[

(2ϵ − 1)∆v2
]

,(27)

du

dt
= −

Pg

(1 − ϵ) ρ
∇ · (v − ϵ∆v) + ϵ (∆v · ∇) u + ϵ

∆v2

ts

, (28)

where the stopping time ts reads

ts =
ϵ (1 − ϵ) ρ

K
. (29)

2.3 Advantages of the one fluid approach

While mathematically equivalent to Eqs. 1 – 6, the barycentric for-

mulation of the dusty gas equations has a number of key advantages

for the numerical solution of dust-gas mixtures. In particular:

(i) The equations can be solved on a single fluid that moves with

the barycentric velocity v, rather than requiring two fluids. In turn,

this implies only one resolution scale in numerical models, avoid-

ing the problems associated with mismatched spatial resolutions

discussed above (c.f. Price & Federrath 2010; Ayliffe et al. 2012;

Laibe & Price 2012a).

(ii) The form of the continuity and acceleration equations

(Eqs. 18 and 19) are similar or identical to the usual equations of

hydrodynamics, with a minor modification to the pressure gradient

and one additional term in the acceleration equation.

(iii) The dust-to-gas ratio, the critical parameter in most as-

trophysical problems, is explicitly evolved. Furthermore, both the

physics producing a change in the dust-to-gas ratio, and the limit in

which the dust-to-gas ratio is constant, are clear.

(iv) Drag terms between the two fluids do not have to be explic-

itly evaluated, meaning treatment of complicated or non-linear drag

regimes is straightforward.

(v) The evolution equation for ∆v (Eq. 21) is analogous to the

induction equation for magnetohydrodynamics or the evolution of

vorticity in incompressible flows, with additional source (∇Pg/ρg)

and decay (−∆v/ts) terms.

(vi) Implicit treatment of the decay term in Eq. 21 in the limit of

ts → 0 can be trivially achieved using operator splitting, since the

exact solution is known.

(vii) The equations can be simplified further in the limit of

strong drag/short stopping times, as we discuss below.

Eqs. 18, 19 and 21 have been used in a reduced form (as-

suming an incompressible fluid) for analytic studies of instabilities
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of the mixture. Using the identities

vg = v − ρd
ρ
∆v, (9)

vd = v +
ρg

ρ
∆v, (10)

Eqs. 1 – 4 become
∂ρ

∂t
+ ∇. (ρv) = 0, (11)

∂v
∂t
+ (v.∇)v = f −

∇Pg
ρ
−
1
ρ
∇

(

ρgρd

ρ
∆v2
)

, (12)

∂

∂t

(

ρd

ρg

)

+ v.∇
(

ρd

ρg

)

= −
ρ

ρ2g
∇ ·

(

ρgρd

ρ
∆v
)

, (13)

∂∆v
∂t
+ (v · ∇)∆v = −

∆v
ts
+
∇Pg
ρg

−(∆v · ∇)v + 1
2
∇

(

ρd − ρg

ρd + ρg
∆v2
)

. (14)

The evolution of the gas internal energy becomes

∂u
∂t
+ (v · ∇)u = −

Pg
ρg
(∇.v) −

Pg
ρg
∇.

(

ρd

ρ
∆v
)

+
ρd

ρ
(∆v.∇) u (15)

+
ρgρd

ρ

∆v2

ts
,

or equivalently, the entropy evolves according to

T
∂s
∂t
+ (v · ∇)s =

ρd

ρ
(∆v.∇) s +

ρgρd

ρ

∆v2

ts
, (16)

where T is the local gas temperature. As expected, the differen-
tial velocity between the gas and the dust is a dissipative and irre-
versible source of energy.

In the Lagrangian frame comoving with the fluid barycentre,
the equations can be simplified further using the total time deriva-
tive
d
dt
=
∂

∂t
+ v.∇, (17)

where the evolution of the position, X, of a fluid particle of this
single fluid is given by dX/dt = v. Thus Eqs. 11–14 simplify to

dρ
dt

= −ρ(∇.v), (18)

dv
dt

= f −
∇Pg
ρ
−
1
ρ
∇

(

ρgρd

ρ
∆v2
)

, (19)

d
dt

(

ρd

ρg

)

= −
ρ

ρ2g
∇ ·

(

ρgρd

ρ
∆v
)

, (20)

d∆v
dt

= −
∆v
ts
+
∇Pg
ρg
− (∆v · ∇)v +

1
2
∇

(

ρd − ρg

ρd + ρg
∆v2
)

, (21)

while the internal energy equation is given by
du
dt
= −

Pg
ρg
(∇.v) −

Pg
ρg
∇

(

ρd

ρ
∆v
)

+
ρd

ρ
(∆v.∇) u +

ρgρd

ρ

∆v2

ts
. (22)

Throughout this section, we have assumed that the volume oc-
cupied by the dust grains is negligible. For astrophysical applica-
tions — with micron to kilometre-sized grains in simulations on
AU or parsec scales — this is an extremely good approximation,
but it can be important in non-astrophysical problems (see Fan &
Zhu (1998) for various examples). Thus, for completeness we give
the one fluid equations generalised to finite volume grains in Ap-
pendix A.

2.3 Advantages of the one fluid approach

While mathematically equivalent to Eqs. 1 – 6, the barycentric for-
mulation of the dusty gas equations has a number of key advantages
for the numerical solution of dust-gas mixtures. In particular:

(i) The equations can be solved on a single fluid that moves with
the barycentric velocity v, rather than requiring two fluids. In turn,
this implies only one resolution scale in numerical models, avoid-
ing the problems associated with mismatched spatial resolutions
discussed above (c.f. Price & Federrath 2010; Ayliffe et al. 2012;
Laibe & Price 2012a).
(ii) The form of the continuity and acceleration equations

(Eqs. 18 and 19) are similar or identical to the usual equations of
hydrodynamics, with a minor modification to the pressure gradient
and one additional term in the acceleration equation.
(iii) The dust-to-gas ratio, the critical parameter in most as-

trophysical problems, is explicitly evolved. Furthermore, both the
physics producing a change in the dust-to-gas ratio, and the limit in
which the dust-to-gas ratio is constant, are clear.
(iv) Drag terms between the two fluids do not have to be explic-

itly evaluated, meaning treatment of complicated or non-linear drag
regimes is straightforward.
(v) The evolution equation for ∆v (Eq. 21) is analogous to the

induction equation for magnetohydrodynamics or the evolution of
vorticity in incompressible flows, with additional source (∇Pg/ρg)
and decay (−∆v/ts) terms.
(vi) Implicit treatment of the decay term in Eq. 21 in the limit of

ts → 0 can be trivially achieved using operator splitting, since the
exact solution is known.
(vii) The equations can be simplified further in the limit of

strong drag/short stopping times, as we discuss below.

While Eqs. 18, 19 and 21 have been used in a reduced form
(assuming an incompressible fluid) for analytic studies of the
streaming instability in protoplanetary discs (Youdin & Goodman
2005; Jacquet et al. 2011), Eq. 20 — the most important equation
in the barycentric formulation — has to our knowledge not been
derived elsewhere.

2.4 Physical interpretation

To understand the physical meaning of the different equations of
the system, it should be first noted that the densities of linear mo-
mentum p and kinetic energy e of the mixtures are

p = ρv, (23)

e =
1
2
ρv2 +

1
2
ρgρd

ρ
∆v2, (24)

implying that Eq. 18 is a standard equation of mass conservation
for the total mass of the system.

Eq. 19 is also similar to a single fluid momentum conservation
equation, except that 1) the gas pressure gradient is divided by the
total density of the fluid, thus taking into account the inertia of the
dust and 2) the dissipated energy from the differential velocity be-
tween the fluid acts like a kinetic pressure for the fluid. Indeed, in
Eq. 24 the term 1

2ρv
2 is the dynamical kinetic energy of the mixture,

while the second term is the density of energy internal to the mix-
ture (which is equivalent to a pressure). The effect of these terms
on the evolution of the fluid vorticity ω = ∇ × v is given by the

Dual approach (no approximation):

Total mass conserved

Composition evolution

Additional anisotropic pressure

Trivial dissipation term

... to single fluid equations

Energy conserved
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to gas ratio ρd/ρg are the natural quantities to study the evolution

of the mixture. Using the identities

vg = v −
ρd

ρ
∆v, (9)

vd = v +
ρg

ρ
∆v, (10)

Eqs. 1 – 4 become

∂ρ

∂t
+ ∇ · (ρv) = 0, (11)

∂v

∂t
+ (v · ∇)v = f −
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−
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, (12)
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(
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)

= −
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∇ ·

(

ρgρd

ρ
∆v

)

, (13)

∂∆v

∂t
+ (v · ∇)∆v = −

∆v
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+
∇Pg

ρg

−(∆v · ∇)v +
1

2
∇

(

ρd − ρg

ρd + ρg

∆v2

)

. (14)

The evolution of the gas internal energy becomes

∂u

∂t
+ (v · ∇)u = −

Pg

ρg

(∇ · vg) +
ρd

ρ
(∆v · ∇) u +

ρd

ρ

∆v2

ts

, (15)

or equivalently, the entropy evolves according to

T
∂s

∂t
+ (v · ∇)s =

ρd

ρ
(∆v · ∇) s +

ρd

ρ

∆v2

ts

, (16)

where T is the local gas temperature. As expected, the differen-

tial velocity between the gas and the dust is a dissipative and irre-

versible source of entropy.

In the Lagrangian frame comoving with the fluid barycentre,

the equations can be simplified further using the total time deriva-

tive

d

dt
=
∂

∂t
+ v · ∇, (17)

such that the evolution of the position, X, of a fluid particle of this

single fluid is given by dX/dt = v. Thus Eqs. 11–14 simplify to

dρ

dt
= −ρ(∇ · v), (18)

dv

dt
= f −

∇Pg

ρ
−

1

ρ
∇ ·

(

ρgρd

ρ
∆v∆v

)

, (19)

d

dt

(

ρd

ρg

)

= −
ρ

ρ2
g

∇ ·

(

ρgρd

ρ
∆v

)

, (20)

d∆v

dt
= −

∆v

ts

+
∇Pg

ρg

− (∆v · ∇)v +
1

2
∇

(

ρd − ρg

ρd + ρg

∆v2

)

, (21)

while the internal energy equation is given by

du

dt
= −

Pg

ρg

(∇ · vg) +
ρd

ρ
(∆v · ∇) u +

ρd

ρ

∆v2

ts

. (22)

The specific entropy of the gas evolves according to

ds

dt
=
ρd

Tρ

∆v2

ts

, (23)

showing that the drag is the only source of entropy in the mixture.

Throughout this section, we have assumed that the volume oc-

cupied by the dust grains is negligible. For astrophysical applica-

tions — with micron to kilometre-sized grains in simulations on

AU or parsec scales — this is an extremely good approximation, but

it can be important in non-astrophysical problems (see Fan & Zhu

(1998) for various examples). For completeness we give the one

fluid equations generalised to finite volume grains in Appendix A.

It should be noted that while physical, the use of the dust-to-

gas ratio introduces an artificial singularity in the equations when

the mixture is only made of dust (ρg = 0). A convenient way to

overcome this difficulty is to use the dust fraction ϵ = ρd/ρ instead

of the dust-to-gas ratio. The gas and the dust densities are calculated

according to ρg = (1 − ϵ) ρ and ρd = ϵρ respectively. Eqs. 18 – 22

become:

dρ

dt
= −ρ(∇ · v), (24)

dϵ

dt
= −

1

ρ
∇ ·
[

ϵ (1 − ϵ) ρ∆v
]

, (25)

dv

dt
= −

∇Pg

ρ
−

1

ρ
∇ ·
[

ϵ (1 − ϵ) ρ∆v∆v
]

+ f, (26)

d∆v

dt
= −

∆v

ts

+
∇Pg

(1 − ϵ) ρ
− (∆v · ∇)v +

1

2
∇
[

(2ϵ − 1)∆v2
]

,(27)

du

dt
= −

Pg

(1 − ϵ) ρ
∇ · (v − ϵ∆v) + ϵ (∆v · ∇) u + ϵ

∆v2

ts

, (28)

where the stopping time ts reads

ts =
ϵ (1 − ϵ) ρ

K
. (29)

2.3 Advantages of the one fluid approach

While mathematically equivalent to Eqs. 1 – 6, the barycentric for-

mulation of the dusty gas equations has a number of key advantages

for the numerical solution of dust-gas mixtures. In particular:

(i) The equations can be solved on a single fluid that moves with

the barycentric velocity v, rather than requiring two fluids. In turn,

this implies only one resolution scale in numerical models, avoid-

ing the problems associated with mismatched spatial resolutions

discussed above (c.f. Price & Federrath 2010; Ayliffe et al. 2012;

Laibe & Price 2012a).

(ii) The form of the continuity and acceleration equations

(Eqs. 18 and 19) are similar or identical to the usual equations of

hydrodynamics, with a minor modification to the pressure gradient

and one additional term in the acceleration equation.

(iii) The dust-to-gas ratio, the critical parameter in most as-

trophysical problems, is explicitly evolved. Furthermore, both the

physics producing a change in the dust-to-gas ratio, and the limit in

which the dust-to-gas ratio is constant, are clear.

(iv) Drag terms between the two fluids do not have to be explic-

itly evaluated, meaning treatment of complicated or non-linear drag

regimes is straightforward.

(v) The evolution equation for ∆v (Eq. 21) is analogous to the

induction equation for magnetohydrodynamics or the evolution of

vorticity in incompressible flows, with additional source (∇Pg/ρg)

and decay (−∆v/ts) terms.

(vi) Implicit treatment of the decay term in Eq. 21 in the limit of

ts → 0 can be trivially achieved using operator splitting, since the

exact solution is known.

(vii) The equations can be simplified further in the limit of

strong drag/short stopping times, as we discuss below.

Eqs. 18, 19 and 21 have been used in a reduced form (as-

suming an incompressible fluid) for analytic studies of instabilities

c⃝ 2014 RAS, MNRAS 000, 1–11

Laibe and Price (2014 a,b)

One fluid… …with two phases

2 Laibe & Price

drag regimes (corresponding to small grains), we found two limi-
tations which lead to a prohibitive computational cost: 1) the dras-
tically small time steps required for the numerical stability of ex-
plicit schemes or the complexity of the implicit schemes involved,
and less trivially 2) a high spatial resolution required to resolve the
differential velocity between the gas and the dust in order to simu-
late the correct physical dissipation rate. The latter occurs because
even if the differential velocity between the fluids is damped after
a few stopping times ts, the gas pressure causes a small spatial de-
phasing between the gas and dust. When the resolution is too low
(∆x ! tscs, see LP12a), the dephasing from numerical simulations
is artificially too large and the energy is over-dissipated.

This means that it is essentially impossible to simulate small
grains accurately using the two fluid approach with standard flu-
ids codes, since both infinitely small time steps and an infinitely
large spatial resolution are required in the limit ts → 0. Worse still,
this limit corresponds to the rather obvious limit in which the two
fluids are perfectly coupled and move precisely as a single fluid
(albeit with a sound speed modified by the dust to gas ratio). For
astrophysics this means that it is not currently possible to simulate
the small, micron to cm sized grains accurately with any existing
dust-gas code, and certainly not possible to simulate both small and
large (metre-to-planetesimal sized) grains with the same technique.

In this paper, we show how the equations describing gas-dust
mixtures can be reformulated to represent a single fluid moving
with the barycentre of the mixture, leading to a set of equations only
slightly modified from the usual equations of gas dynamics, with
additional evolution equations for the differential velocity and the
dust-to-gas ratio. This approach, though initially developed with
the large drag/small grain regime in mind, turns out to be both gen-
eral and elegant, since the important physical quantities of the mix-
ture are computed directly, avoiding all of the artificial complica-
tions which arise in the two-fluid treatment.

The paper is structured as follows: The equations for the evo-
lution of the single fluid are derived in Sec. 2. This set of equations
is completely general and can be used to simulate both large and
small grains. In Sec. 3, we show how they can be further simpli-
fied in the specific limit of small grains and subsonic differential
motion, leading to the standard equations of gas dynamics (with a
modified sound speed), coupled with an advection-diffusion equa-
tion for the dust-to-gas ratio. In Sec. 4 we demonstrate that the
main physical effects associated with dust, including linear waves,
shocks and the streaming instability, can all be captured with this
simplified approach, and give the appropriate criterion for the use
of the simplified formulation in numerical codes.

2 SINGLE FLUID MODEL

2.1 Two fluid equations

In astrophysical problems, dust and gas mixtures are usually treated
by two continuous phases that interact via a drag term (see e.g.
LP12a for a particular implementation). The dust fluid is treated as
a pressureless fluid. Using explicit notations, the equations for the

conservation of density and momentum are therefore given by:

∂ρg

∂t
+ ∇.
(

ρgvg
)

= 0, (1)

∂ρd

∂t
+ ∇. (ρdvd) = 0, (2)

ρg

(

∂vg
∂t
+ vg.∇vg

)

= ρgf + K(vd − vg) − ∇Pg, (3)

ρd

(

∂vd
∂t
+ vd.∇vd

)

= ρdf − K(vd − vg), (4)

where K is the drag coefficient which is a function of the local gas
and dust parameters, as well as the differential velocity between
the fluids (see LP12b for an extensive discussion of drag regimes).
In the following, we will denote cs the gas sound speed such as
δPg = c2sδρg and ts, the typical drag stopping time given by

ts ≡
ρdρg

K
(

ρg + ρd
) . (5)

Some studies adopt tstop = ρd/K for the stopping time. We use the
definition given by Eq. 5 since it is more physically relevant as we
will see hereafter. Qualitatively, two limiting behaviours occur for
the mixture’s evolution, depending on the value of ts compared to
the other physical typical time. If ts is large (weak drag, i.e. large
grains in astrophysics), the drag dissipate slowly the differential
kinetic energy between the phases and is essentially perturbative.
From a numerical point of view, drag terms can be integrated by a
straightforward explicit integration. If ts is small (strong drag, i.e.
small grains in astrophysics), the drag controls the evolution of the
mixture since momentum between the two phases is almost instan-
taneously exchanged. The behaviour of the mixture becomes less
intuitive. In LP12a, we have illustrated the behaviour of a gas and
dust mixture at strong drag regimes with the dustywave problem.
After a typical time ts, the initial differential velocity between the
fluids is damped and the barycentre of the fluid propagates with
a modified sound speed c̃s (see below, Eq. 43). However, since ts
remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the
gas is given by
∂u
∂t
+ (vg · ∇)u = −

Pg
ρg
(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, Eqs. 1 – 4 and 6 can be reformulated as
a single fluid, moving with the barycentric velocity,

v ≡
ρgvg + ρdvd
ρg + ρd

, (7)

and evolving the differential velocity between the two phases, ∆v,
defined according to

∆v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution
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drag regimes (corresponding to small grains), we found two limi-
tations which lead to a prohibitive computational cost: 1) the dras-
tically small time steps required for the numerical stability of ex-
plicit schemes or the complexity of the implicit schemes involved,
and less trivially 2) a high spatial resolution required to resolve the
differential velocity between the gas and the dust in order to simu-
late the correct physical dissipation rate. The latter occurs because
even if the differential velocity between the fluids is damped after
a few stopping times ts, the gas pressure causes a small spatial de-
phasing between the gas and dust. When the resolution is too low
(∆x ! tscs, see LP12a), the dephasing from numerical simulations
is artificially too large and the energy is over-dissipated.

This means that it is essentially impossible to simulate small
grains accurately using the two fluid approach with standard flu-
ids codes, since both infinitely small time steps and an infinitely
large spatial resolution are required in the limit ts → 0. Worse still,
this limit corresponds to the rather obvious limit in which the two
fluids are perfectly coupled and move precisely as a single fluid
(albeit with a sound speed modified by the dust to gas ratio). For
astrophysics this means that it is not currently possible to simulate
the small, micron to cm sized grains accurately with any existing
dust-gas code, and certainly not possible to simulate both small and
large (metre-to-planetesimal sized) grains with the same technique.

In this paper, we show how the equations describing gas-dust
mixtures can be reformulated to represent a single fluid moving
with the barycentre of the mixture, leading to a set of equations only
slightly modified from the usual equations of gas dynamics, with
additional evolution equations for the differential velocity and the
dust-to-gas ratio. This approach, though initially developed with
the large drag/small grain regime in mind, turns out to be both gen-
eral and elegant, since the important physical quantities of the mix-
ture are computed directly, avoiding all of the artificial complica-
tions which arise in the two-fluid treatment.

The paper is structured as follows: The equations for the evo-
lution of the single fluid are derived in Sec. 2. This set of equations
is completely general and can be used to simulate both large and
small grains. In Sec. 3, we show how they can be further simpli-
fied in the specific limit of small grains and subsonic differential
motion, leading to the standard equations of gas dynamics (with a
modified sound speed), coupled with an advection-diffusion equa-
tion for the dust-to-gas ratio. In Sec. 4 we demonstrate that the
main physical effects associated with dust, including linear waves,
shocks and the streaming instability, can all be captured with this
simplified approach, and give the appropriate criterion for the use
of the simplified formulation in numerical codes.

2 SINGLE FLUID MODEL

2.1 Two fluid equations

In astrophysical problems, dust and gas mixtures are usually treated
by two continuous phases that interact via a drag term (see e.g.
LP12a for a particular implementation). The dust fluid is treated as
a pressureless fluid. Using explicit notations, the equations for the

conservation of density and momentum are therefore given by:

∂ρg

∂t
+ ∇.
(

ρgvg
)

= 0, (1)

∂ρd

∂t
+ ∇. (ρdvd) = 0, (2)

ρg

(

∂vg
∂t
+ vg.∇vg

)

= ρgf + K(vd − vg) − ∇Pg, (3)

ρd

(

∂vd
∂t
+ vd.∇vd

)

= ρdf − K(vd − vg), (4)

where K is the drag coefficient which is a function of the local gas
and dust parameters, as well as the differential velocity between
the fluids (see LP12b for an extensive discussion of drag regimes).
In the following, we will denote cs the gas sound speed such as
δPg = c2sδρg and ts, the typical drag stopping time given by

ts ≡
ρdρg

K
(

ρg + ρd
) . (5)

Some studies adopt tstop = ρd/K for the stopping time. We use the
definition given by Eq. 5 since it is more physically relevant as we
will see hereafter. Qualitatively, two limiting behaviours occur for
the mixture’s evolution, depending on the value of ts compared to
the other physical typical time. If ts is large (weak drag, i.e. large
grains in astrophysics), the drag dissipate slowly the differential
kinetic energy between the phases and is essentially perturbative.
From a numerical point of view, drag terms can be integrated by a
straightforward explicit integration. If ts is small (strong drag, i.e.
small grains in astrophysics), the drag controls the evolution of the
mixture since momentum between the two phases is almost instan-
taneously exchanged. The behaviour of the mixture becomes less
intuitive. In LP12a, we have illustrated the behaviour of a gas and
dust mixture at strong drag regimes with the dustywave problem.
After a typical time ts, the initial differential velocity between the
fluids is damped and the barycentre of the fluid propagates with
a modified sound speed c̃s (see below, Eq. 43). However, since ts
remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the
gas is given by
∂u
∂t
+ (vg · ∇)u = −

Pg
ρg
(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, Eqs. 1 – 4 and 6 can be reformulated as
a single fluid, moving with the barycentric velocity,

v ≡
ρgvg + ρdvd
ρg + ρd

, (7)

and evolving the differential velocity between the two phases, ∆v,
defined according to

∆v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution
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drag regimes (corresponding to small grains), we found two limi-
tations which lead to a prohibitive computational cost: 1) the dras-
tically small time steps required for the numerical stability of ex-
plicit schemes or the complexity of the implicit schemes involved,
and less trivially 2) a high spatial resolution required to resolve the
differential velocity between the gas and the dust in order to simu-
late the correct physical dissipation rate. The latter occurs because
even if the differential velocity between the fluids is damped after
a few stopping times ts, the gas pressure causes a small spatial de-
phasing between the gas and dust. When the resolution is too low
(∆x ! tscs, see LP12a), the dephasing from numerical simulations
is artificially too large and the energy is over-dissipated.

This means that it is essentially impossible to simulate small
grains accurately using the two fluid approach with standard flu-
ids codes, since both infinitely small time steps and an infinitely
large spatial resolution are required in the limit ts → 0. Worse still,
this limit corresponds to the rather obvious limit in which the two
fluids are perfectly coupled and move precisely as a single fluid
(albeit with a sound speed modified by the dust to gas ratio). For
astrophysics this means that it is not currently possible to simulate
the small, micron to cm sized grains accurately with any existing
dust-gas code, and certainly not possible to simulate both small and
large (metre-to-planetesimal sized) grains with the same technique.

In this paper, we show how the equations describing gas-dust
mixtures can be reformulated to represent a single fluid moving
with the barycentre of the mixture, leading to a set of equations only
slightly modified from the usual equations of gas dynamics, with
additional evolution equations for the differential velocity and the
dust-to-gas ratio. This approach, though initially developed with
the large drag/small grain regime in mind, turns out to be both gen-
eral and elegant, since the important physical quantities of the mix-
ture are computed directly, avoiding all of the artificial complica-
tions which arise in the two-fluid treatment.

The paper is structured as follows: The equations for the evo-
lution of the single fluid are derived in Sec. 2. This set of equations
is completely general and can be used to simulate both large and
small grains. In Sec. 3, we show how they can be further simpli-
fied in the specific limit of small grains and subsonic differential
motion, leading to the standard equations of gas dynamics (with a
modified sound speed), coupled with an advection-diffusion equa-
tion for the dust-to-gas ratio. In Sec. 4 we demonstrate that the
main physical effects associated with dust, including linear waves,
shocks and the streaming instability, can all be captured with this
simplified approach, and give the appropriate criterion for the use
of the simplified formulation in numerical codes.

2 SINGLE FLUID MODEL

2.1 Two fluid equations

In astrophysical problems, dust and gas mixtures are usually treated
by two continuous phases that interact via a drag term (see e.g.
LP12a for a particular implementation). The dust fluid is treated as
a pressureless fluid. Using explicit notations, the equations for the

conservation of density and momentum are therefore given by:

∂ρg

∂t
+ ∇.
(

ρgvg
)

= 0, (1)

∂ρd

∂t
+ ∇. (ρdvd) = 0, (2)

ρg

(

∂vg
∂t
+ vg.∇vg

)

= ρgf + K(vd − vg) − ∇Pg, (3)

ρd

(

∂vd
∂t
+ vd.∇vd

)

= ρdf − K(vd − vg), (4)

where K is the drag coefficient which is a function of the local gas
and dust parameters, as well as the differential velocity between
the fluids (see LP12b for an extensive discussion of drag regimes).
In the following, we will denote cs the gas sound speed such as
δPg = c2sδρg and ts, the typical drag stopping time given by

ts ≡
ρdρg

K
(

ρg + ρd
) . (5)

Some studies adopt tstop = ρd/K for the stopping time. We use the
definition given by Eq. 5 since it is more physically relevant as we
will see hereafter. Qualitatively, two limiting behaviours occur for
the mixture’s evolution, depending on the value of ts compared to
the other physical typical time. If ts is large (weak drag, i.e. large
grains in astrophysics), the drag dissipate slowly the differential
kinetic energy between the phases and is essentially perturbative.
From a numerical point of view, drag terms can be integrated by a
straightforward explicit integration. If ts is small (strong drag, i.e.
small grains in astrophysics), the drag controls the evolution of the
mixture since momentum between the two phases is almost instan-
taneously exchanged. The behaviour of the mixture becomes less
intuitive. In LP12a, we have illustrated the behaviour of a gas and
dust mixture at strong drag regimes with the dustywave problem.
After a typical time ts, the initial differential velocity between the
fluids is damped and the barycentre of the fluid propagates with
a modified sound speed c̃s (see below, Eq. 43). However, since ts
remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the
gas is given by
∂u
∂t
+ (vg · ∇)u = −

Pg
ρg
(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, Eqs. 1 – 4 and 6 can be reformulated as
a single fluid, moving with the barycentric velocity,

v ≡
ρgvg + ρdvd
ρg + ρd

, (7)

and evolving the differential velocity between the two phases, ∆v,
defined according to

∆v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution
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In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust

to gas ratio ρd/ρg are the natural quantities to study the evolution

of the mixture. Using the identities

vg = v −
ρd

ρ
∆v, (9)

vd = v +
ρg

ρ
∆v, (10)

Eqs. 1 – 4 become

∂ρ

∂t
+ ∇ · (ρv) = 0, (11)

∂v

∂t
+ (v · ∇)v = f −

∇Pg

ρ
−

1

ρ
∇ ·

(

ρgρd

ρ
∆v∆v

)

, (12)

∂

∂t

(

ρd

ρg

)

+ v · ∇

(

ρd

ρg

)

= −
ρ

ρ2
g

∇ ·

(

ρgρd

ρ
∆v

)

, (13)

∂∆v

∂t
+ (v · ∇)∆v = −

∆v

ts

+
∇Pg

ρg

−(∆v · ∇)v +
1

2
∇

(

ρd − ρg

ρd + ρg

∆v2

)

. (14)

The evolution of the gas internal energy becomes

∂u

∂t
+ (v · ∇)u = −

Pg

ρg

(∇ · vg) +
ρd

ρ
(∆v · ∇) u +

ρd

ρ

∆v2

ts

, (15)

or equivalently, the entropy evolves according to

T
∂s

∂t
+ (v · ∇)s =

ρd

ρ
(∆v · ∇) s +

ρd

ρ

∆v2

ts

, (16)

where T is the local gas temperature. As expected, the differen-

tial velocity between the gas and the dust is a dissipative and irre-

versible source of entropy.

In the Lagrangian frame comoving with the fluid barycentre,

the equations can be simplified further using the total time deriva-

tive

d

dt
=
∂

∂t
+ v · ∇, (17)

such that the evolution of the position, X, of a fluid particle of this

single fluid is given by dX/dt = v. Thus Eqs. 11–14 simplify to

dρ

dt
= −ρ(∇ · v), (18)

dv

dt
= f −

∇Pg

ρ
−

1

ρ
∇ ·

(

ρgρd

ρ
∆v∆v

)

, (19)

d

dt

(

ρd

ρg

)

= −
ρ

ρ2
g

∇ ·

(

ρgρd

ρ
∆v

)

, (20)

d∆v

dt
= −

∆v

ts

+
∇Pg

ρg

− (∆v · ∇)v +
1

2
∇

(

ρd − ρg

ρd + ρg

∆v2

)

, (21)

while the internal energy equation is given by

du

dt
= −

Pg

ρg

(∇ · vg) +
ρd

ρ
(∆v · ∇) u +

ρd

ρ

∆v2

ts

. (22)

The specific entropy of the gas evolves according to

ds

dt
=
ρd

Tρ

∆v2

ts

, (23)

showing that the drag is the only source of entropy in the mixture.

Throughout this section, we have assumed that the volume oc-

cupied by the dust grains is negligible. For astrophysical applica-

tions — with micron to kilometre-sized grains in simulations on

AU or parsec scales — this is an extremely good approximation, but

it can be important in non-astrophysical problems (see Fan & Zhu

(1998) for various examples). For completeness we give the one

fluid equations generalised to finite volume grains in Appendix A.

It should be noted that while physical, the use of the dust-to-

gas ratio introduces an artificial singularity in the equations when

the mixture is only made of dust (ρg = 0). A convenient way to

overcome this difficulty is to use the dust fraction ϵ = ρd/ρ instead

of the dust-to-gas ratio. The gas and the dust densities are calculated

according to ρg = (1 − ϵ) ρ and ρd = ϵρ respectively. Eqs. 18 – 22

become:

dρ

dt
= −ρ(∇ · v), (24)

dϵ

dt
= −

1

ρ
∇ ·
[

ϵ (1 − ϵ) ρ∆v
]

, (25)

dv

dt
= −

∇Pg

ρ
−

1

ρ
∇ ·
[

ϵ (1 − ϵ) ρ∆v∆v
]

+ f, (26)

d∆v

dt
= −

∆v

ts

+
∇Pg

(1 − ϵ) ρ
− (∆v · ∇)v +

1

2
∇
[

(2ϵ − 1)∆v2
]

,(27)

du

dt
= −

Pg

(1 − ϵ) ρ
∇ · (v − ϵ∆v) + ϵ (∆v · ∇) u + ϵ

∆v2

ts

, (28)

where the stopping time ts reads

ts =
ϵ (1 − ϵ) ρ

K
. (29)

2.3 Advantages of the one fluid approach

While mathematically equivalent to Eqs. 1 – 6, the barycentric for-

mulation of the dusty gas equations has a number of key advantages

for the numerical solution of dust-gas mixtures. In particular:

(i) The equations can be solved on a single fluid that moves with

the barycentric velocity v, rather than requiring two fluids. In turn,

this implies only one resolution scale in numerical models, avoid-

ing the problems associated with mismatched spatial resolutions

discussed above (c.f. Price & Federrath 2010; Ayliffe et al. 2012;

Laibe & Price 2012a).

(ii) The form of the continuity and acceleration equations

(Eqs. 18 and 19) are similar or identical to the usual equations of

hydrodynamics, with a minor modification to the pressure gradient

and one additional term in the acceleration equation.

(iii) The dust-to-gas ratio, the critical parameter in most as-

trophysical problems, is explicitly evolved. Furthermore, both the

physics producing a change in the dust-to-gas ratio, and the limit in

which the dust-to-gas ratio is constant, are clear.

(iv) Drag terms between the two fluids do not have to be explic-

itly evaluated, meaning treatment of complicated or non-linear drag

regimes is straightforward.

(v) The evolution equation for ∆v (Eq. 21) is analogous to the

induction equation for magnetohydrodynamics or the evolution of

vorticity in incompressible flows, with additional source (∇Pg/ρg)

and decay (−∆v/ts) terms.

(vi) Implicit treatment of the decay term in Eq. 21 in the limit of

ts → 0 can be trivially achieved using operator splitting, since the

exact solution is known.

(vii) The equations can be simplified further in the limit of

strong drag/short stopping times, as we discuss below.

Eqs. 18, 19 and 21 have been used in a reduced form (as-

suming an incompressible fluid) for analytic studies of instabilities
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(v2.1) implementing the algorithms and with the precise setup of

the test problems is released alongside this paper1.

2 THE DIFFUSION APPROXIMATION FOR DUST

2.1 Continuum equations

2.1.1 General case

In LP14a we showed that, to first order in ts/T , where T is the

timescale for a sound wave to propagate over a typical distance L,

the equations describing the evolution of a dust-gas mixture can be

written in the form

dρ

dt
= −ρ(∇ · v), (1)

dv

dt
= (1 − ϵ) fg + ϵ fd + f , (2)

dϵ

dt
= −

1

ρ
∇ ·

[

ϵ(1 − ϵ)ρts∆ f
]

, (3)

du

dt
= −

P

ρg

(∇ · v) − ϵts (∆ f · ∇) u + Λheat − Λcool, (4)

where ρ is the total density of the mixture, ϵ ≡ ρd/ρ is the mass

fraction of dust, f represents accelerations acting on both compo-

nents of the fluid while fg and fd represent the accelerations acting

on the gas and dust components, respectively, ∆ f ≡ fd − fg is the

differential acceleration between the gas and dust, u is the specific

thermal energy of the gas, P is the gas pressure, and Λheat and Λcool

are additional heating and cooling terms, respectively2 . The veloc-

ity v is the barycentric velocity of the mixture, defined as

v ≡
ρdvd + ρgvg

ρ
= ϵvd + (1 − ϵ)vg, (5)

In the so-called terminal velocity approximation (Youdin & Good-

man 2005; Chiang 2008; Barranco 2009; Lee et al. 2010; Jacquet

et al. 2011) assumed in Equations 1–4, ∆ f is rapidly balanced by

the drag. Thus, the time dependence of the differential velocity can

be ignored, and the differential velocity between the gas and dust is

given by

∆v ≡ (vd − vg) ≃ ts∆ f . (6)

This also implies that the anisotropic pressure term in the momen-

tum equation (see LP14a) should be neglected. The terminal veloc-

ity approximation is valid when the drag coefficient K is large such

that the stopping time,

ts ≡
ρdρg

K(ρd + ρg)
=
ϵ(1 − ϵ)ρ

K
, (7)

is short compared to the timestep. Various physical prescriptions

for K in the Epstein and Stokes drag regimes are given in Laibe &

Price (2012b) but the essential point is that K is inversely propor-

tional to the grain size, being large for small grains.

The differential acceleration ∆ f depends on the physics in the

problem, i.e. the forces affecting the gas but not the dust, which may

1 http://users.monash.edu.au/˜dprice/ndspmhd/
2 Eq. 4 differs from the expression we gave for the “first order approxi-

mation” in LP14a. The drag heating term, ϵ∆v2/ts, is clearly negligible in

the terminal velocity approximation and the PdV work term should involve

∇ · v rather than ∇ · vg. Both approximations are required for the numerical

scheme to conserve total energy as defined in the terminal velocity approx-

imation (Eq. 39).

include pressure, magnetic and other forces. In our numerical im-

plementation we consider the contributions from the pressure gra-

dient (see below) and also the artificial viscosity term, which should

likewise affect the gas only.

2.1.2 Hydrodynamics

For the simple case of hydrodynamics, the only force is the pressure

gradient, giving

fg = −
∇P

ρg

; fd = 0, (8)

and thus

∆ f =
∇P

ρg

, (9)

giving Equations 1–4 in the form

dρ

dt
= −ρ(∇ · v), (10)

dv

dt
= −

∇P

ρ
+ f , (11)

dϵ

dt
= −

1

ρ
∇ · (ϵts∇P) , (12)

du

dt
= −

P

ρg

(∇ · v) −
ϵts

ρg

(∇P · ∇u) + Λheat − Λcool. (13)

These are similar to the usual equations of hydrodynamics in the

absence of dust. The only differences are the extra equation that

describes the evolution of the dust fraction; the modifications to the

thermal energy equation; and the fact that the pressure is related

to the gas density only, not the total density (see Sec. 2.1.3 below;

this gives the zeroth order effect of a ‘heavy fluid’, as discussed in

LP14a).

2.1.3 Equation of state

The equation set is closed by the usual equation of state specify-

ing the gas pressure P in terms of the gas density and temperature.

Unless otherwise specified in this paper we assume an adiabatic

equation of state, i.e.

P = (γ − 1)ρgu = (γ − 1)(1 − ϵ)ρu, (14)

where γ is the usual adiabatic constant.

2.2 Timestepping

The main change when adopting the formulation given above com-

pared to hydrodynamics is the addition of the diffusion equation for

the dust fraction (12). This introduces an additional constraint on

the timestep when the diffusion coefficient is large. Assuming an

isothermal equation of state P = c2
sρg = c2

s (1 − ϵ)ρ and a constant

density, (12) can be written as a simple diffusion equation for ϵ

dϵ

dt
= ∇ · (η∇ϵ) , (15)

where the diffusion coefficient η ≡ ϵtsc
2
s . This implies a stability

constraint of the form

∆t < ∆tϵ = C0

h2

η
= C0

h2

ϵtsc2
s

, (16)
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Figure 3. The dustywave test, showing velocity of gas (filled circles) and dust (open circles) after 4.5 periods on the SPH particles with the two-fluid
formulation (left) and the one-fluid formulation (right), compared to the analytic solution given by the solid and dashed red lines for the gas and dust,
respectively. In the two fluid case the gas and dust are represented by 2 ⇥ 100 of particles, whereas in the one fluid formulation the two velocities are carried
on the same set of 100 particles. The one fluid formulation solves the over-damping problem at low resolution present in the two fluid formulation at high drag
(compare bottom two panels of each Figure). The slight phase error in the gas velocity in the two fluid formulation, caused by interpolation errors, is also not
present in the one fluid case (compare top two panels of each Figure).

and one set given the density, mass and velocity of the dust:

⇤d,a = ⇥a⇤a, (102)
md,a = ⇥ama, (103)
vd,a = va + (1 � ⇥a)�va, (104)
ua = 0. (105)

This is the procedure we use in this paper, implemented in splash
(Price 2007), which enables a direct comparison to the two-fluid
formulation.

4.2.3 Results

Fig. 3 compares the results obtained with the two-fluid algorithm
and the one-fluid algorithm on the dustywave problem, in each case
shown against the analytic solution derived in Laibe & Price (2011)
for both the gas and the dust phases. The drag coe⇥cient is varied
systematically from weak (K = 0.001) to strong (K = 1000) drag
regimes. For the one-fluid simulations the number of SPH particles
is fixed to 100, with 2 ⇥ 100 required for the two fluid calcula-
tions. The solutions of the dustywave problem can be seen to be
well reproduced by the one-fluid algorithm. The accuracy is of or-
der a few percent in the L1 norm for every drag regime considered,
consistent with a second order integration scheme. Importantly, the
direct comparison with the results obtained with the two-fluid al-
gorithm (comparing left and right panels) shows that the spatial
resolution criterion required for strong drag regimes is no longer
needed. With 100 SPH particles of each type per wavelength, the
criterion h < csts gives Kl ⇧ 50 as the maximum drag coe⇥cient
that can be simulated by the two fluid algorithm. The left panel of
Fig. 3 shows that the wave amplitude is already incorrectly repro-
duced with the two-fluid method for K = 100 and that the wave

in completely over-damped for K = 1000 (see Sect. 4.2 of Laibe
& Price (2012a) for a quantitative discussion on the rate of energy
over-dissipated in under-resolved simulations). To handle the case
K = 1000, we would need to have used 2 ⇥ 2000 = 4000 particles
with the two-fluid algorithm. There is no resolution requirement in
the one-fluid algorithm except the usual need to resolve a wave-
length by ⌅ 8–10 particles, reducing the computational cost by a
factor of ⌅ 400 in 1D. In 3D, the computational cost is reduced by
a factor of 4003 = 64 million: Accurate 3D simulations with the
two-fluid algorithm at high drag would be inconceivable. An addi-
tional gain results from the fact that the implicit integration scheme
for two-fluids converges slowly and is of limited utility when the
drag is very strong (Laibe & Price 2012b). An additional factor (of
⇧ 100) is gained in the one-fluid algorithm from the ability to use
an e⇥cient implicit integration scheme, as described in Sect. 3.9.2.
This implies a total improvement in speed of 6.4 billion (this is not
a misprint) in 3D.

4.3 dustyshock

The dustyshock problem involves the propagation of a shock in a
dust and gas mixture. The problem is simplified by using a linear
drag regime with constant drag term K, no heat transfer between
the phases and no viscosity other than the standard shock-capturing
terms used in SPH. After a transient phase, the shock is followed
by a stationary phase that consists of the solution for a pure gas
solution propagating at a modified � and sound speed, as described
in Laibe & Price (2012a). In the dustyshock problem the advec-
tion of the mixture and the treatment of the discontinuity, which
involves the SPH artificial viscosity terms, bring an additional com-
plexity compared to the dustybox and the dustywave problems. As

c⇤ 2014 RAS, MNRAS 000, 1–18

two fluids formalism one fluid formalism

Careful: very large grains…



HL Tau

Dipierro et al. (2015)



Turbulence in the ISM

Tricco et al. (2017)



HD 142527

Price et al. (2018)



Updates on the algorithms

Regularisation:
(public)

Ballabio al. (2018)

4 Ballabio et al.

y

-100

0

100 t=21900 t=46720 t=51100 t=65700

y

x
-100 0 100

-100

0

100 t=21900

x
-100 0 100

t=46720

x
-100 0 100

t=51100

x
-100 0 100

-12

-11

-10

-9

-8

lo
g
 �

 �
d
 d

z

t=65700

Figure 1. Rendered images of dust surface density (in code units) at di�erent times during a 3D SPH simulation of a dusty protostellar disc with a radial extent
of R 2 [1, 120] au and an embedded planet of mass 0.5 MJ at 60 au. The dust surface density profile follows a power law with index p = 0.5. We used both
the implementations described in Sect. 2 (upper panels) and Sect. 3 (lower panels). The gas disc density structure (not shown) is spatially larger than the dusty
disc, producing a region in the outer disc with a strong gradient in the dust di�usivity. The evolution of the dust dynamics in these regions is better handled
with the new implementation. In particular, the spurious dust rings, that appear at late times with the old formulation and that signal that dust mass is not well
conserved, disappear with the new formulation. The temperature profile drops as a power law with q = �0.7 and the disk aspect ratio is H (R0)/R0 = 0.025,
at R0 = 1 au. The simulation describes the evolution of a 0.1 millimeter grain population.

0 5000 10000 15000 20000 25000

t [years]

10�5

10�4

M
du

st
[M

�
]

✏ = s2

1+s2

✏ = s2

⇢

Figure 2. Time evolution of the total dust mass for the parameterisation
described in Sect. 2 (✏ = s

2/⇢, dashed line) and in Sect. 3 (✏ = s
2/(1+ s2),

solid line). Importantly, the dust mass does not increase over time with the
new parameterisation.

✏ = s
2/(1+ s

2) (solid line). While with the old implementation the
dust mass increases in time (starting from a value of 5 ·10�6

M� and
reaching 3 ·10�4

M� , after ⇠ 2 ·104 years), the new implementation
better computes the evolution of the dust density, avoiding most of
the numerical artefacts occurring at the edge of the dusty disc due
to the strong gradients in the dust fraction. Moreover, our tests show

that the computation of the dust fraction and the thermal energy
in our new implementation is faster than the p✏ ⇢ parameterisation
described in Sect. 2.

4 LIMITING THE STOPPING TIME

As mentioned earlier, despite the conservation ensured by the spatial
discretisation of the fluid equations, non-conservation may still arise
due to timestepping errors. Non-conservation of gas/dust mass are
particularly vulnerable in regions of small ✏ where the dust fraction
tends to relax the timestep (see Eq. 19). However, since these regions
are usually occupied by dust grains with large stopping times, they
are the very regions that need a small timestep in order to be accurate.
This breakdown of our timestep criterion is most likely due to the
violation of the assumptions used to derive Eq. (19), and in particular
to the fact that it was derived neglecting gradents in the dust fraction,
as discussed already in Section 2 above. In theory, we should be able
to reduce our timestep (by adopting the full timestep condition, Eq.
(20), or by reducing C0) to maintain mass conservation. We have
verified that maintaining a ‘su�ciently small’ timestep for these
problematic particles preserves mass conservation for the system,
but at the cost of impossibly slow simulations when, e.g., very small
amounts of dust get flung out and stranded in the low-density outer
disc. Therefore, in practice we seek a more viable option that can
circumvent these problem particles while still conserving gas/dust
mass for the system. It is rather vexing that such violations most
likely occur in ‘peripherial’ particles that often have little influence
on the simulation at large. From experience, numerical artefacts are
mostly likely to occur in the upper/outer regions of discs with high
aspect ratio, H/R, and low (in absolute value) radial power-law
index for the temperature, q. The dust di�usion, i.e. ✏tsrP, in these
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Figure 2. Ten dust densities from a MULTIGRAIN simulation after having settled for 15 orbits in a 3D vertical column of a protoplanetary disc at R = 50 au
(assuming H/R = 0.05; so H = 2.5 au) using 100 ⇥ 87 ⇥ 80 = 670 800 simulation particles. The grain size and initial dust fraction for each phase is listed
in Table 1. Large dust grains efficiently settle towards the disc mid-plane, but still have a much lower density than the smaller dust grains because the global
number density of the larger grains is lower. Our MULTIGRAIN simulation with 10 phases is a factor of two slower than one single-phase simulation, thus
making it approximately 5 times faster to run overall.

4.3.1 Initial conditions

We simulate a disc-like environment at a radius R = 50 au using a
thin, vertical (Cartesian) column of gas in near-hydrostatic equilib-
rium with an external acceleration in the form of

aext = � GMz

(R2 + z2)3/2
ẑ, (48)

where G is Newton’s gravitational constant, M is the stellar mass,
and z is the ‘vertical’ coordinate along the length of the column (x
and y represent the two shorter dimensions of the column). The gas
density of the column is given by

⇢g(z) = ⇢g,0 exp


� z

2

2H2

�
, (49)

where we choose H/R = 0.05, giving a disc scale height of H =
2.5 au. We assume an isothermal equation of state with P = c

2
s⇢,

where cs ⌘ H⌦ and ⌦ ⌘
p

GM/R3, corresponding to an orbital
time torb ⌘ 2⇡/⌦ ⇡ 353 yrs. We adopt code units with a distance
unit of 10 au, mass in solar masses and time units such that G = 1.
These choices give an orbital time of ⇡ 70.2 in code units.

The particles are initially placed on a close-packed lattice us-
ing 100 ⇥ 87 ⇥ 80 = 670 800 particles in the domain [x, y, z] 2
[±1,±0.75,±0.65]. We then stretch the particles in z using the
method described in Price (2004) to give the density profile given
in Equation (49). We set ⇢g,0 to 10�3 in code units (⇡ 6 ⇥
10�13 g/cm3 in physical units), corresponding to a particle mass
in code units of 2.42⇥10�9. We use periodic boundary conditions
in all directions, but set the boundary in z at ±10H in order to
avoid periodicity in the vertical direction.

We relaxed the density profile by running the code for 15 or-
bits with artificial viscosity, at which point we added N = 10 dis-
tinct dust phases to the system. We assigned sj for each phase by
creating a cell-centred, logarithmic grid in s extending from smin

to smax in increments of � log s = 1
N�1 log10 (smax/smin). Each

dust phase was distributed throughout the disc with an initially uni-
form dust fraction. We constrained the total dust fraction to be
✏ = 1/101 (corresponding to a dust-to-gas ratio of 0.01) and set

Table 1. The initial values for sj and ✏j used in the settling test assuming
a power-law distribution in grain sizes ranging from smin = 0.1µm to
smax = 1mm with a power-law index of p = 3.5.

j sj [cm] ✏j

1 1.00⇥ 10�5 3.99⇥ 10�5

2 2.78⇥ 10�5 6.65⇥ 10�5

3 7.74⇥ 10�5 1.11⇥ 10�4

4 2.15⇥ 10�4 1.85⇥ 10�4

5 5.99⇥ 10�4 3.09⇥ 10�4

6 1.67⇥ 10�3 5.15⇥ 10�4

7 4.64⇥ 10�3 8.59⇥ 10�4

8 1.29⇥ 10�2 1.43⇥ 10�3

9 3.59⇥ 10�2 2.39⇥ 10�3

10 1.00⇥ 10�1 3.99⇥ 10�3

the magnitudes of ✏j according to the power-law distribution

✏(s) = ✏0s
3�p

, for smin  s  smax, (50)

where ✏(s) is the continuum dust fraction, ✏0 is a normalisation
factor, and p is the usual power-law index for number density as
a function of grain size (e.g. Mathis et al. 1977). In particular, ✏j
is determined by integrating Equation (50) across each grain-size
cell and then normalising their combined sum via Equation (9).2

Assuming smin = 0.1µm, smax = 1mm, and p = 3.5, the initial
values for sj and ✏j in this test are listed in Table 1.

4.3.2 Results

After adding the dust, we ran the simulation for an additional 15
orbits. The resulting dust density for each of the different phases is

2 Because we defined a cell-centred grid, the first and last cells extend
halfway beyond the interval s 2 [smin, smax]. The extra mass picked up
in these two cells maintains the power-law distribution at the endpoints, but
means that the total dust mass depends weakly on N . Since physical dust
distributions are not likely to have sharp endpoints, this approach is easily
justified.
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Figure 3. Time evolution of the the densities of three dust phases (j = [1, 9, 10]). The initial conditions in this simulation were the same as in Figure 2,
except with equal dust fractions (✏j = ✏/N ) to make the relative density enhancement within and between dust phases more visible. We have also adjusted
the colourbar in order to allow direct comparison with the settling tests performed by PL15 and Price et al. (2017). Note that the density enhancement due to
settling has a shallower dynamic range than the built-in density gamut created by our grains-size distribution (see Figure 2).

Table 1. The initial values for sj and ✏j used in the settling test assuming
a power-law distribution in grain sizes ranging from smin = 0.1µm to
smax = 1mm with a power-law index of p = 3.5.

j sj [cm] ✏j

1 1.00⇥ 10�5 3.99⇥ 10�5

2 2.78⇥ 10�5 6.65⇥ 10�5

3 7.74⇥ 10�5 1.11⇥ 10�4

4 2.15⇥ 10�4 1.85⇥ 10�4

5 5.99⇥ 10�4 3.09⇥ 10�4

6 1.67⇥ 10�3 5.15⇥ 10�4

7 4.64⇥ 10�3 8.59⇥ 10�4

8 1.29⇥ 10�2 1.43⇥ 10�3

9 3.59⇥ 10�2 2.39⇥ 10�3

10 1.00⇥ 10�1 3.99⇥ 10�3

In order to better show how the mid-plane density is affected
by settling, we setup and ran a second simulation where the dust
fractions were all equal, i.e. ✏j = ✏/N . Figure 3 shows the result-
ing time evolution of the dust density for phases j = [1, 9, 10]. This
time we clearly see that settling increases the dust density relative
to its initial state and at a rate that is commensurate with its settling
efficiency. These results are in good agreement with previous set-

tling tests performed in the literature (PL15; Hutchison et al. 2016;
Price et al. 2017), albeit with a smaller initial dust fraction.

As a final benchmarking exercise, we ran 10 single-phase sim-
ulations using the initial conditions from Table 1 and compared
them to the results from the multiphase test above (see Figure 4).
Although the two scenarios are not strictly equivalent because the
single-phase simulations do not include the backreaction from the
N � 1 other phases, the global solutions still match because (i) the
majority of the disc mass resides in the gas and (ii) the gas is essen-
tially motionless throughout the simulation (see, e.g., the top row
in Figure 3, which can be used as a proxy for the gas).

The large-scale agreement we see in Figure 4 does not extend
to smaller scales. In Figure 5 we zoom in on the s = 0.1µm grains
to illustrate the substructure in ✏j that develops as a result of the
backreaction included from other dust phases. These differences
between the single-phase and MULTIGRAIN simulations continue
to grow with time. Therefore, single-phase simulations should be
used with caution in situations involving turbulent gas dynamics
and/or long timescales.

The differences we observe in Figure 5 are small, but prevent
the test from being truly rigorous. One way of making the indirect
coupling between dust phases vanishingly small is to concentrate
all of the dust mass into the smallest grains which remain fixed to

c� 2017 RAS, MNRAS 000, 1–9
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Figure 1. DUSTYWAVE solution K=1000 with 2 ⇥ 128 particles
with/without slope limiter. Reconstruction prevents wave over-damping.

At the barycentre r⇤ = ra + 0.5rai, these relations combine to

v⇤
ai · r̂ai = vai · r̂ai + 0.5|rai| (Sai + Sia) , (10)

where Sai ⌘ r̂↵air̂
�
ai

@v↵
a

@x�
a

. Velocity gradients are computed during
the density summation according to

@v↵

@r�
= � 1

⌦a⇢a

X

b

mbv
�
abr

�Wab (ha) . (11)

The factor 0.5 (Sai + Sia) may additionally be replaced by a slope
limiter, i.e. a function f (Sai, Sia) that prevents the development of
numerical oscillations. We use the VAN LEER MC limiter (?), since
it provides best compromise between smoothing and dissipation.

3 RESULTS

We test our improved algorithm using the NDSPMHD code1 (Price
2012). We use explicit timestepping with a leapfrog integrator and
quintic kernels.

1 http://users.monash.edu.au/˜dprice/ndspmhd
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Figure 2. Convergence on the DUSTYSHOCK problem. Reconstruction al-
lows to captures shock discontinuities. The additional use of a slope-limiter
prevents the development of spurious oscillations.

3.1 DUSTYWAVE

We perform the DUSTYWAVE test described in ? with 2⇥ 128 par-
ticles for K = 1000, ⇢g = ⇢d = 1 and cs = 1. The drag timestep
is �t = 1.25 ⇥ 10�4. Fig. 1 shows unambiguously that even in
situations where severe overdamping was obtained (top panel), re-
construction helps to capture the exact solution accurately (mid and
bottom panels). We measure a convergence rate of order / h2 in
L1 norm, obtained at almost no extra computational cost for any
value of the smoothing length csts.

3.2 DUSTYSHOCK

We perform the DUSTYSHOCK test with 2 ⇥ 1000 particles, using
the same parameter set as in Sect. 3.1 (Laibe & Price 2012a). Fig. 2
shows that reconstruction captures the shock discontinuities within
⇠ 3h and prevents spurious smoothing of the solution. For this test,
the additional use of a slope limiter is required to reduce numerical
oscillations induced by the reconstruction scheme.
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