

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

3D MHD simulations to

model solar eruptive events

S. Masson

G.Aulanier & E. Pariat

¹ Laboratoire d'Etude Spatial en Instrumentation Astrophysique, Meudon, France

8 Octobre 2018

Workshop AstroSim

S. Masson

Outline

- Modeling solar eruptions
- Recent results on solar jets and coronal mass ejection
- Scientific and computational prospective

• Solar eruptions

 Coronal Mass Ejection (CME) Coronographe / STEREO •Solar Jets Oct 25 2003 00:12:11 Champ magnétique interplanétaire propagation des particules

Energy release through magnetic reconnection :

- Plasma heating and particle acceleration
- Magnetic reconfiguration

Understanding the causes of the eruptive activity e.g. the physical mechanisms triggering the eruptions

& the consequences : dynamics of the CME, bright ribbons, energetic particles

Magneto-hydrodynamic formalism

large scale modeling (>1s and > 1m)

no treatment of the particles

auto-consistent simulations of solar eruptions

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \left(\rho \vec{u}\right) = 0$$

$$\frac{\partial T}{\partial t} = -(\vec{u} \cdot \vec{\nabla})T - (\gamma - 1)T\left(\vec{\nabla} \cdot \vec{u}\right)$$

$$\frac{\partial \rho \vec{u}}{\partial t} = -\vec{\nabla} \left(\rho \vec{u} \cdot \vec{u}\right) - \vec{\nabla}P + \mu^{-1}\left(\vec{\nabla} \times \vec{B}\right) \times \vec{B} + \rho \vec{g}$$

$$\frac{\partial \vec{B}}{\partial t} - \vec{\nabla} \times \left(\vec{u} \times \vec{B}\right) = 0$$

• The solar corona

- ionized plasma n~10^{14–16} m⁻³ (Hydrogen, Helium & heavy ions)
- Magnetized plasma : active regions with strong magnetic field \sim 1000 G

 $\beta = P_{kin} / P_{mag} \ll 1$: structured by the magnetic field

- Small electric resistivity $R_m \! > \! > \! 1$: Reconnection develops at small scales

Eclipse August 2017

• Scale challenges

Simulation numérique MHD

3D MHD Codes @ LESIA

ARMS Code DeVore 1991; DeVore & Antiochos, 2008	Aulanier et al., 2005 OHM-MPI Code + Collaboration with the LUTh
- Cartesian and spherical	- Cartesian
- Flux Corrected Transport algorythm: strong gradients resolution (e.g. schock capture)	 high order scheme for derivatives Diffusive term to ensure the code stability
- div B =0 => No Data-driven	- div B ≠ 0 => Data driven
<image/>	<figure></figure>
 Small & Large scale MHD simulation No limitation of the size and resolution of the system Structures at small scale (e.g. magnetic island) 	 Small scale (active region) MHD simulation structures at small scale: increase the spatial resolution (in progress) Control of each diffusive term

Choose the most appropriate code !!

Initiation

magnetic field (observed) + atmosphere

Destabilize the system

Apply slow flows at the solar surface

line-tying => inject magnetic stress and energy

Dynamics of the solar eruption

Current sheet formation

Magnetic reconnection: change of **field lines connectivity**

Outline

- Modeling solar eruptions
- Recent results on solar jets and coronal mass ejection

- Scientific and computational prospective

• Effect of the plasma- β on solar jet properties (ARMS)

Pariat, DeVore & Antiochos, ApJ 2009

Pariat, Dalmasse, et al. ApJ, 2015

- Solar jet model : magnetic reconnection between closed & twisted field and open field.
 - Jets are observed over a broad spatial range:

-small scale chromospheric jets -large scale coronal jets

Varying the plasma- β to interpret the observations of the observed jet-like events :

Common property : Helicoidal structures

• Effect of the plasma- β on solar jet properties (ARMS)

Pariat, Dalmasse, et al. ApJ, 2015

• Effect of the plasma- β on solar jet properties (ARMS)

700 800 900 1000 1100 1200 time

Pariat, Dalmasse, et al. ApJ, 2015

coronal-like jets

• Effect of the plasma- β on solar jet properties (ARMS)

• Triggering mechanism of coronal mass ejections (OHM-MPI)

Torus instability = When the filament reaches the height at which the external B field decreases $\propto R^{\text{-n}}$

Does the critical decay index vary with respect to the property in the filament?

Zuccarello, Aulanier, Gilchrist, ApJ, 2015

Apply 4 different photospheric forcing => Build up the filament with different properties

• Triggering mechanism of coronal mass ejections (OHM-MPI)

To determine the onset of the eruption: Stop the forcing earlier

Zuccarello, Aulanier & Gilchrist, ApJ, 2015

• CME eruption into a more realistic environment (ARMS)

Realistic atmosphere :

Large scale background B field :

- Magnetic dipole at the Sun center + Isothermal solar wind Masson et al., 2013
 - → Define the open/closed field domain

Dipolar active region

More realistic – large scale magnetic configuration

• CME eruption into a more realistic environment (ARMS)

Masson, DeVore & Antiochos, submitted

Magnetic reconnection with the surrounding field

- At least **4 reconnection sites/episodes** versus 1 in the small scale simulation.
 - \rightarrow corona reconfiguration
 - → particle acceleration

Coupling the filament and the open IMF

 \rightarrow Injection of particles into the IMF

• CME eruption into a more realistic environment (ARMS)

Masson, DeVore & Antiochos, submitted

Magnetic reconnection with the surrounding field

- At least **4 reconnection sites/episodes** versus 1 in the small scale simulation.
 - \rightarrow corona reconfiguration
 - → particle acceleration

Coupling the filament and the open IMF

→ Injection of particles into the IMF

Fast auto-consistent filament

🗭 e

eruption into an interplanetary field

structured by the solar wind

Outline

- Modeling solar eruptions
- Recent results on solar jets and coronal mass ejection
- Scientific and computational prospectives

• Going to smaller scales

3D MHD simulations : reproduce the global dynamics of the eruption, but it is too slow compare to the reality

Include some small scale MHD processes !!

- Multi-reconnection sites in the current sheet
- Petscheck reconnection regime

Reconnection rate increase

• Plasmoids'role in reconnection and flares

How do islands form and evolve in 3D flare current sheet ?

How does it affect the eruption characteristic (dynamics radiative signatures,...)? • Increase the spatial and temporal resolution

To identify magnetic islands and study their dynamics

OHM-MPI : non-uniform mesh

~8 GB / output file (1 vector)

ARMS : Using the adaptive mesh refinement

~3 GB / output file (3 vectors & 4 scalar)

+ output files every t < t_A over a long period of time (>20 tA)

• OHM-MPI allows us to control the resistivity in the system ≠ ARMS has a numerical resistivity

 \rightarrow OHM-MPI needs a fine-tuning of parameters during the simulation

→ test several parameters within a day : need to decrease the time spending in the queue

• Use 'homemade' softs taylored to analyse solar eruption simulations :

Size of high resolution runs \rightarrow Difficult to analyse the results locally

Help to parallelize & export the visualisation softs to analyse the results on clusters

• Including particles

How those particles are accelerated during the eruptions ?

→ EUV bright ribbons / X-rays

Masson et al., 2009

Compare the radiative signature with simulations including particles \rightarrow new constrain on the model

Test particles in a dynamic B resulting from 3D MHD simulation

 \rightarrow Shape & dynamics of the radiative signatures

Rosdahl & Galsgaard, 2010

