Simulations of massive magnetized dense core collapse

Matthias González

Benoît Commerçon, Neil Vaytet Raphaël Mignon-Risse

Laboratoire AIM, Université Paris Diderot-CEA-CNRS, CEA Saclay

Outline

Context

2 Massive dense core collapse simulations

- Setup
- Morphologies
- Outflow
- Disc

Exascale perspectives

Star formation : context

Interstellar medium life cycle

Open questions

- angular momentum transport
- disc formation
- fragmentation IMF/CMF

Pre-stellar phase of star formation

- pre-stellar dense core : R \sim 0.1 pc
- first Larson core : R \sim 10 AU
- $\bullet\,$ second Larson core : R $\sim\,0.01$ AU

Vaytet et al. 2013

Why studying the high-mass stars?

high-mass stars (M>8M $_{\odot}$, L>10³ L $_{\odot}$) :

- a few ($\simeq 1\%)$
- but dominant in energetic budget
 - kinetic : outflows, jets, winds, SN explosion
 - radiative : luminosity, ionisation, radiative pressure

Few observational constraints

- short lifetime
- fewer in number

Main difference compared to low-mass star formation :

• still accreting when star forms

 \Rightarrow important feedback : radiative pressure, ionization

The radiation barrier

- stars up to 150 M_{\odot} are observed $_{(Figer \ 05, \ Crowther+10;16)}$
- 1D analytical $_{(Larson \& Starrfield 71)}$ and numerical $_{(Kuiper+10)}$ estimate of 20 M_{\odot}
- 2D effect : disc-accretion, flashlight effect (Yorke & Sonnhalter 02, Kuiper+10)
- 3D simulations : Rayleigh-Taylor instabilities

(Krumholz+07, Rosen+16)

Krumholz+09

But the magnetic field is neglected

The fragmentation issue

2 scenarii

- competitive accretion (Bonnell et al. 2004)
- Core accretion (McKee & Tan 2003)

Interplay between radiative feedback and magnetic field reduces the fragmentation (Commercon+11, Myers+13)

We build up on these results of isolated massive core by including non-ideal MHD and radiative transfer

Star formation simulation setup

We use RAMSES (Teyssier 2002) with

- grey FLD (Commerçon+11, González+15)
- sink particles (Bleuler & Teyssier 2014) with protostellar feedback (Hosokawa+10)
- hydro or ideal MHD or ambipolar diffusion (Masson+12,16)

$$\begin{aligned} \partial_t \rho &+ \nabla \cdot [\rho \mathbf{u}] &= 0\\ \partial_t \rho \mathbf{u} &+ \nabla \cdot [\rho \mathbf{u} \otimes \mathbf{u} + P\mathbb{I}] &= 0\\ \partial_t \rho \mathbf{u} &+ \nabla \cdot [\rho \mathbf{u} \otimes \mathbf{u} + P\mathbb{I}] &= -\rho \nabla \Phi - \lambda \nabla E_r + (\nabla \times \mathbf{B}) \times \mathbf{B}\\ \partial_t E_T &+ \nabla \cdot [\mathbf{u} (E_T + P_T) - \mathbf{B} (\mathbf{B} \cdot \mathbf{u}) - E_{AD} \times \mathbf{B}] &= -\rho \mathbf{u} \cdot \nabla \Phi - \mathbb{P}_r \nabla : \mathbf{u} - \lambda \mathbf{u} \nabla E_r + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_R} \nabla E_r\right)\\ \partial_t E_r &+ \nabla \cdot [\mathbf{u} E_r] &= -\mathbb{P}_r \nabla : \mathbf{u} + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_R} \nabla E_r\right) + \kappa_P \rho c(a_R T^4 - E_r)\\ \partial_t B &- \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times E_{AD} &= 0\end{aligned}$$

Ambipolar diffusion EMF :
$$E_{AD} = \frac{1}{\gamma_{AD} \rho_i \rho} \left[(\nabla \times \mathbf{B}) \times \mathbf{B} \right] \times \mathbf{B}$$

Star formation simulation setup

We use RAMSES (Teyssier 2002) with

- grey FLD (Commerçon+11, González+15)
- sink particles (Bleuler & Teyssier 2014) with protostellar feedback (Hosokawa+10)
- hydro or ideal MHD or ambipolar diffusion (Masson+12,16)

Morphologies with HYDRO

Matthias González (Univ. Paris Diderot)

ASTROSIM Conference

October 9, 2018 10 / 17

Morphologies with Ambipolar Diffusion

Matthias González (Univ. Paris Diderot)

October 9, 2018 12 / 17

4.83 km/s 1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

1.6

1.2

0.4

0.0

-0.4

-0.8

-1.2

1500

4.83 km/s

Disc properties

Disc selection criteria (Joos et al. 2012) : $ho > 10^{-15}$ g/cm³, $v_{\phi} > 2v_{r,z}$, $ho v_{\phi}^2 > P$

Disc size

Comparison to an analytical model (Hennebelle+16)

Magnetisation

AD reduces B_{max} by one order of magnitude with a plateau at about 0.3 G

Summary and perspectives

$100~M_{\odot}$ dense core collapse with AD

- magnetic outflow collimated by toroidal magnetic field
- no radiative Rayleigh-Taylor instabilities
- thin and small discs dominated by thermal pressure

Perspectives

- grey vs multigroup/irradiation model (Kuiper et al. 2010) cf. R. Mignon-Risse
- global simulation of molecular cloud collapse with turbulence
- synthetic observations

article in prep.

Numerical perspectives : towards exascale computing

- heterogeneous hardware : CPU, GPU, MIC...
- more complex parallelism
- load balancing, scaling (up to 100,000 cores)
- fault-tolerant
- I/O

 $\implies {\sf need to adapt/re-write our codes}: {\sf RAMSES} + {\sf canoP} \ ({\sf MDLS}) \\ \implies {\sf development/test/maintain} \ ({\sf e.g. RAMSES_ISM})$

Specificity of radiation (M)HD

- implicit solver
- iterative method with large matrix inversion
- \implies coupling with linear algebra libraries? (Kokkos/Trilinos, PETSc)