PLANTING COMPACT BINARIES IN COSMOLOGICAL SIMULATIONS

Astrid Lamberts Caltech -> Observatoire de la Côte d'Azur

Astrosim 2018

NEW FIELD IN ASTRONOMY

Fundamental physics

Beyond GR Mass of graviton Hubble constant Nuclear physics Neutron star equation of state R-process elements

Gravitational waves from stellar remnants (black holes, neutron stars, white dwarves)

High energy astrophysics

Relativistic outflows BH formation Gamma-ray bursts

Global star formation

Initial mass function Low-metallicity environments R-process elements Dwarfs galaxies Milky-Way structure

Stellar/Binary evolution

Supernova kicks Common enveloppe Mass loss Cluster evolution

And numerics for Waveforms Data analysis

FORMATION OF GW PROGENITORS

COMBINE MERGER MODELS WITH COSMOLOGICAL SIMULATIONS

FIRE SIMULATIONS

Feedback In Realistic Environments project (FIRE, Hopkins+14,17)

Ex: LATTE simulation Mass resolution : 7000 Msun

MAKING BINARY COMPACT OBJECTS

MAKING BINARY COMPACT OBJECTS

- Binary population synthesis code (BSE, Hurley+2002): simplified stellar and binary model.
- Many free parameters: how to explore N-dimensional space?
- Input: Initial masses, periods, eccentricities: ~ million systems.
- Explore metallicity from 1% of Solar to Solar.

=> Create a dataset of compact object formation/merger properties.

 For black holes: mergers in clusters (CMC code, with Carl Rodriguez): N body code + stellar/binary interactions.

=> Create dataset of mergers from clusters, different masses, mass profiles, metallicities, stellar evolution

GROWING COMPACT BINARIES IN GALAXIES Star formation history Binary population model Metallicity Metallicity dependent Positions/Trajectory Gravitational wave Gas properties emission Star cluster properties cluster mergers (M. Grudic) (C. Rodriguez)

IMPACT OF COMPLEX STAR FORMATION

>10¹⁰ stars

1 million binary black holes

100 million binary white dwarfs

Different populations found in different structures

Lamberts+18; Blunt, Lamberts+ in prep.

IMPACT OF DWARF GALAXIES

"Individual" Numerical requirements

FIRE simulations : MW-like galaxies:

10 runs with 1-5 million CPU (M~7000 Msun) 1 run with 25 million CPU in progress (M~900 Msun) Outputs : 7-20 GB/snapshot x 600 : 5-10 TB/run National/European-scale supercomputers

Cluster evolution : 100 000 CPU hours, need ~20 models scaling difficult beyond ~100 CPU, specific supercomputers

10 million binaries: ~24 CPU hours Need ~100 models for white dwarfs ~700 models for black holes Embarrassingly parallel, ok on local clusters, needs "bookkeeping"

1) MW simulations for LISA predictions

Sampling issues : initial conditions need to be sampled properly (x10)

2) Communicating results and accessibility
Making a catalogue: accessible, durable, easy to use, advertised : how?
2D/3D visualisation

In prep: double white dwarf catalogues (~100 million objects)

3) LIGO/Virgo mergers from binaries and clusters

FIREBOX simulation. 15 Mpc/h, M~60 000 Msun ~50 MW galaxies, 1000 dwarf galaxies 5 million CPU (PRACE, R. Feldmann), 50 TBs, 200 GB/output

Needs for analysis:

Storage and high-memory computing (finding cloud properties, Determine galactic tides, start particle history) Flexible outputs, good time sampling (for gas evolution) Intermediate data products: which formats? Visualisation: tools?

Statistical tools to analyze different models

