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Magnetic fields in cool stars

Strassmeier (1999)
HD 12545

Morin, Donati et al. (2008-2010), Folsom et al. 2016
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 Mostly multipolar for M > 0.35
 Mostly dipolar for Mg < 0.35

U Field strength increases with rotation
[ More and more toroidal with rotation

Petit et al. 2008, B cool survey (Marsden et al. 2014)
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O In stars cooler than the Sun:
Polar spots with large coverage



Equivalent of sunspot number

Latitude

Sunspots: temporal evolution
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Observations of magnetic cycles on other stars

1 Indirect measurements: chromospheric activity

Noyes et al. 1984

J Recent direct measurements: magnetic field
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Chromospheric activity (Mount

Wilson data, Ca Il HK lines):
P =Rp128+/-0.48
cyc

where the Rossby number
Ro=P, /T

=> P increases with P,

Donati et al 2008, Fares et al 2009, Mengel et al 2016: T boo: 2 years
Petit et al 2009, Morgenthaler et al 2011: HD 190771 (complex variability)

Garcia et al 2010, Salabert et al. 2016, Kiefer et al. 2017: asteroseismic signatures

Boro-Saika et al 2016: 61 Cyg A (solar twin): 14 years



Solar interior and plasma flows

O Granulation (surface convection)

The Solar Interior

Photosphere
(5718K)

Core
(15.7 Million K)

Radiative Zone
(7 Million K to
2 Million K)
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Theory: the induction equation (MHD)

H; \ Transport of magnetic field
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Shearingof B  Advectionof B  Compressibility
Source of magnetic field
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v Q-effect v o-effect v Babcoc’k-Leithon

source term

2D numerical simulations

Mean induction equation

Simplified description Fast and efficient
of physical processes tool

Parametric studies

B(V-u)

=Vx(uxB)-V x (nV xB)

— Vx(nmV x B)

7

~ ~

Magneticdif fusion

v’ Large-scale flows
(meridional

circulation)
v Downward pumping by
penetrative convection

v Transport from the base of the
convection zone to the surface

3D numerical simulations
Full MHD equations

/o \

Much more Self-consistent
complex simulations



Magnetic topology: influence of the

 Change in Rossby

Ro=inertia/Coriolis
(also seen in planetary
dynamos: Christensen &
Aubert 2006)

- Small Ro:
Ordering role of
Coriolis=dipolar
(no role of shear)

- Large Ro:

Inertia becomes
dominant=multipolar
(important role of
shear)

Rossby number
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Magnetic cycles in 2D models

* Mean-field induction equation only

* Babcock-Leighton dynamo model
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Standard model: - Cyclic field
single-celled - Butterfly diagram
meridional ok with observations
circulation - Very strong dependence of
e Dikpati & g ] cycle period on MC amplitude
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Prescriptions from 3D models

Q=1Q, Q=5Q,

a

ASH code

Prescriptions from Brown et al. 2008:
— Vp a 9—0.9
— AQ increases with

1.000F v T p ) E 30[

Stronger Btor Jouve et al. 2010

_o.00p compared to Bpol 1w 20F The MC profile
& 1 5 | needs to be
y 0.010} g oF ] modified to
: ! Longer cycle when ] reconcile models
Q increased 5 and observations
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Applying solar models to other stars:
more realistic models

Eulag code
Strugarek et al. 2017
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Spots in 3D models?

O 3D models produce magnetic cycles without producing spots and meridional
circulation does not seem to set up the cycle period

O Strong concentrations of toroidal field can still be built but buoyant structures do
not make it to the top to produce spots!

(b) t= 680 days (c) t=684days
J0° P [,

ASH code




Simulation of buoyant loop rise and sunspots

L The buoyant rise has to be modeled independently:

Toroidal flux tube introduced at the base
of the CZ in a convective layer

ASH code

d Orindividual sunspots can be modeled in
radiative MHD codes (only upper CZ and atmosphere)

o
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y(Mm)
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3D kinematic models: combining approaches

0 Mean-field dynamo models + 3D flux emergence and spot formation (veates & Munoz Jaramillo
2013, Miesch & Dikpati 2014, Miesch & Teweldebirhan 2016)

MagIC code r: r/ro = 0.949

= 0.0100
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t=0.0100

Kumar, Jouve, Pinto
& Rouillard , 2018

DB: datacube_corfield.vtk

Latitude

Self-consistent
butterfly diagrams

Coronal field +
wind solutions




Magnetism of more massive stars

3 In more massive stars (with radiative envelopes)

- Only 5 to 10% are found to possess a strong magnetic field, they are Ap/Bp stars
- Magnetic field starts to be detected on non-Ap stars: much weaker and complex



Ap/Bp magnetism

A Origin of magnetic field in a star
possessing a radiative envelope?

Observations:

- Inclined dipole (Luftinger et al 2010)

- Field intensity: either strong fields

(B > 300 G) or no field (Auriere et al. 2007)
- No detection on large sample of Am or
HgMn stars (Auriere et al. 2010)

O Why such a threshold? (Auriere et al. 2007)
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= Strong field == Differential rotation suppressed s Strong measured Bl

= Weak field == Toroidal field created by differential rotation and back-reacts:

=== Structure dominated by toroidal field when
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Numerical approach: 3D simulations

Initial value problem
MaglIC code

<Q>,<Bp> <By> ,<Bp>
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t=0.33 tap
O A toroidal field is built which will then

Q Initial conditions: poloidal field (Lu) back-react on the differential rotation:
wound-up by cylindrical differential - Is this configuration unstable?
rotation (Re) - Under which conditions is it triggered?

- What are the consequences of this instability?



Evidence for an instability

Q Typical case: Lu=60, Re=2 x 10*: instability sets in around t=0.1 tap

MaglIC code

= Favored modes:
w1 m=4,5and 6

Toroidal Mag. Energy

= Strong toroidal field,
antisymmetric,
close to the surface

1=0.33 tap

Bl : ¢=100°

= Instability around
the regions of
strong toroidal field

Jouve et al., 2015




What is the nature of this instalgilitv?

J Magneto-rotational instability: Fida

- source of energy: kinetic energy of differential rotation Q‘,D
(decreasing outward) B |

- growth rate prop. to rotation rate and shear N %% 4
- high m’s can be excited

- necessitates weak field and strong Azimuthal MRI
differential rotation

F=jxB
O Tayler instability:

—> -4—
- source of energy: magnetic energy —)ﬁ*
- m=1 favored
- growth rate prop. to Alfvén frequency : i
- necessitates strong field and weak (differential) =i _
rotation

 MRI vs Tl: importance of rotation rate (or shear) to toroidal Alfvén frequency ratio



What is the nature of this instability?

L MRI vs Tl: importance of rotation rate to toroidal Alfvén frequency ratio: Ogilvie (2007)
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Consequences:
Application to A-type stars

O Background field evolves on poloidal Alfvén time scale t,

0 Growth time of the MRI of the order of t, (0=q /2 with g around 1 here)

Poloidal Mag. Energy

mmmm) Stable and unstable cases distinguished by the ratio ty/t,

Time (Alfven time units)
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Effects of stable stratification

QO Additional parameters:
= degree of stratification measured by N/<2
= Ratio of viscosity to thermal diffusivity measured by Pr
= Instars, N/Q islarge (10%-103) and Pr is small (10®-10%)

O We expect strong effects of stable stratification

Q But a large thermal diffusion (small Pr) can help to reduce the effects of

stratification
Pr=1 Pr=102
For N/Q=5, the MRI: Pl — {  ale=
- islost for Pr=1 07k — m=o T
- recovered for Pr=102 ¢ “| - ™ £ .
Gaurat et al., in prep. v e | T




Application to A-type stars

Q Surface radial field: non-axisymmetric VS axisymmetric

= Unstratified cases

to/t,, =3x107 By: r/r, :..(.).918 B,: r/r, = 0.921 to/t,, = 1072

...... ::z 233.3
= Stratified cases
_ -3 Br:r/fro =0.921 Br: r/ro = 0.921 _ -3
tolt,, =1.2x103 Brirre=0921 to/t,, = 2.5x10
e Bl ” 32
36 2.4
..... 24 1.6
12 P
0 0.0
-12 o8
.......................... 24 16
“““ 36 2.4
48 .

Q Estimate of threshold field: BOm-t = 10_2Q0d /N

a Proportionality with rotation rate also seen in observations (Lignieres et al. 2014)




Forced differential rotation

Q Spherical Couette flow producing Stewartson layer and concentrated Bphi

A

C‘ Meduri et al., subm.
Courtesy A. Barik
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More interaction with other communities?

O With the applied mathematicians
- Could we model a star from its deep interior to its atmosphere?

- For now, separate fields of research because (among other things) Mach
number changes drastically

- Asymptotic-Preserving (AP) schemes: enable to design 1 scheme which
deals with a set of equations and its asymptotic limit when a parameter

goes to 0.
pe:h i N )25
Degond, lecture notes 2—5() g—5()
on AP schemes
W v




More interaction with other communities?
1 With the applied mathematicians

The idea is that these schemes (which consist in impliciting well-chosen

terms) will automatically adapt when going from € small to e=0(1).

- Uniform stability (independent of ¢)

Compressible system

Anelastic limite ->0

- Example in plasma physics:

Degond & Deluzet, 2017, JCP
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More interaction with other communities?

O With atmospheric scientists?

- In general, large number of fluid problems have also been studied in the
context of atmopsheric research (instabilities, convection, stably stratified
flows,...)

- Most codes used for stellar MHD perform
DNS and can have entropy diffusion to deal Brown et al. 2011
with unresolved scales

D3Ry b __D3a(30)

8 =

8

8 o

: : e ) MM Mol
- Subgrid-scale modelling difficult when = m_“"“wm,,,m, ‘, R VM
MHD problems are considered g

Cyclic field when 1 decreased

- « Implicit LES » used in Eulag code but no explicit transport coef so difficulty
to compare with DNS (Strugarek et al. 2016: comparison between Eulag and
ASH)



Structuring the community?

d Many different codes doing the same thing with similar numerical methods

- MaglC, Parody, XSHELLS, ASH, (Rayleigh, Pencil, Dedalus, Eulag)
- Only Rayleigh scales to a very hogh number of proc (> 100000)
- Need to improve parallelisation to be competitive in France?

- Need to gather more people around 1 particular code?

[ Difficulty to get help from engineers because no permanent position for them

- GPUs?
- Help from engineers (close to researchers) are crucial (MaglC efficiency was

improved by factor 2 thanks to B. Putigny who implemented SHTNS but... no
position for him in IRAP!)



