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TOOLS:

- first-principles molecular dynamics (AIMD, NVT, DFT, PAW, GGA, etc.)
to study liquids, gases, supercritical fluids

- maximum of liquid-gas separation defines the super-critical point

- pure terms, complex phases, presence of volatiles

PROPERTIES:
- SUPERCRITICAL POINT & DOME
- liquid/gas equilibrium

- equation of states, speciation, element and isotope partitioning
- electronic (i.e. optical) properties, disk opacities, vibrational spectroscopy
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Every atom has a unique position and velocity
within the simulation, and all of the atomistic
properties associated with that specific atom:
atomic name, atomic mass, atomic radius, and
the interatomic potential functions. All of the
atoms are treated as if they are classical particles
that move according to Newton's laws of motion
(i.e. F=ma; thus, the acceleration (a) acting on
any atom is determined by the net interatomic
force (F) acting on the the atom divided by the
atom's mass (m)).

http://atomsinmotion.com/book/chapter5/md



Update the velocity
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Once the net force on each of the atoms is
known, the velocities can be estimated from
Newton's law assuming that the forces are
constant over a small enough increment in time.
The time steps in molecular dynamics simulations
are very small, typically between femtoseconds

(1fs = 1x10°1 s) and picoseconds (1ps = 1x10712
s). Essentially, the acceleration on the atom is
multiplied by the time step to determine the
change in velocity. After all of the velocities are
determined, a thermostat is used to scale the
velocities in such a way that the appropriate
energy of the system is maintained.

http://atomsinmotion.com/book/chapter5/md
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The positions of each atom must also be updated.
Once the net forces that are acting on the atoms
are known, then the positions of each atom can
be updated through very accurate integration
algoritms. These integrators, such as the Verlet
or Leap-Frog algorithms, will increment the
position of an atom from its current position
based on the net force, velocity, and time step.
The integration methods, thermostats, and time
steps must be selected based on compromises
between accuracy, stability, and speed.

http://atomsinmotion.com/book/chapter5/md



Repeat the computations
using the updated
velocities and positions.
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Molecular dynamics experiments proceed
iteratively, where the output from one iteration
becomes the input to the next (i.e. this step now
becomes step 1 and the process repeats!). The
above sequence of steps represents the
computational process that occurs numerous
times before the atoms are rendered to the
screen. In these simulations, this computational
loop will actually be repeated 5-20 times
(depending on the number of atoms within the
simulation) before the atoms are drawn to the
screen. As the number of atoms in the simulation
increases the time it takes to compute the new
positions and velocities also increases. And in an
effort to keep the simulation interactive, the
atoms are drawn more frequently as the
simulation size increases; this results in the atoms
appearing to move more slowly as the number of
atoms increases — an unavoidable consequence
of complex "real-time" computational simulations.

Statistics after ~ ten(s) of picoseconds



4 tetrahedral
Sp3-0rbitals Density

Functional
Theory

ENERGY + CHARGE

i

ALL PHYSICAL PROPERTIES









PROCEDURE

We calculate the
forces acting on the atoms
=>

From there we obtain
velocities

=> thanks to Newton,

We calculate the new positions

Time step on the order of 1 fs (1 femtosecond = | 015 seconds ! )



PROCEDURE

We start with a
snapshot of a
vibrating solid and
heat it up until it
melts.
Overheating!
Velocity of moving
atoms scales with
temperature.

Simulation time on the order of a few ps
(1 picosecond = 103 femtoseconds)



THE GIANT IMPACT
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CONCLUSIONS

|dentifying the vapor vs liquid vs supercritical state is not trivial

- Bubbles nucleation spontaneous => marks the spinodal — the moment when the
liquid becomes unstable

- This allows us to constrain the condensation of the protolunar disk

- The melt in supercritical state has peculiar properties, like speciation
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- smaller than supercritical density =>L + V
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- larger than supercritical density => L

- volatiles dissolved into melt, less degassing



