A general theory of thermocompositional adiabalic and diabakic conveckion

DRF/MDS: P. Tremblin, T. Padioleau, P. Kestener, E. Audik DEN/DANS/STMF: S. Kokh
DRF/IRFU/DAP: S. Fromang, P.-0. Lagage Exeter/Lyou: I. Baraffe, G. Chabrier, M. Phillips

- Brown dwarfs spectral sequence:

Clouds?

- Brown dwarfs spectral sequence:

or reduced T gradient?

- Brown dwarfs spectral sequence:

or reduced
T gradient?

Convection linked to
CO/CH4 Eransition?

- Stralified compressible hydrodynamics

Numerical scheme, simulations and HPC implementation \rightarrow Thomas Padioleau
with P. Kestener CEA/Mdls: HPC with S. Kokh CEA/DEN: numerical scheme and E. Audit CEA/Mdls

- Stratified compressible hydrodynamics

$$
\frac{\partial \rho}{\partial t}+\vec{\nabla}(\rho \vec{u})=0
$$

$$
\begin{aligned}
\frac{\partial \rho \vec{u}}{\partial t}+\vec{\nabla}(\rho \vec{u} \otimes \vec{u}+P) & =\rho \vec{g} \\
\frac{\partial \rho \mathscr{E}}{\partial t}+\vec{\nabla}(\vec{u}(\rho \mathscr{E}+P)) & =\rho c_{p} H(X, T)
\end{aligned}
$$

$$
\frac{\partial \rho X}{\partial t}+\vec{\nabla}(\rho X \vec{u})=\rho R(X, T)
$$

$$
\mathscr{E}=e+\frac{1}{2} u^{2}+\phi
$$

$$
\vec{g}=-\vec{\nabla} \phi
$$

$$
P=e(\gamma-1)=\rho k_{b} T / \mu(X)
$$

- Stratified compressible hydrodynamics
- Compressibiliby/conservation
- finite volume scheme
- co-localised variables
- Problems
- poor accuracy at Low Mach - small timestep ($d t=d x / c$)
- poor hydrostatic balance
- Stratified compressible hydrodynamics
- Problems
- poor accuracy at Low Mach

- poor hydrostatic balance

- Stratified compressible hydrodynamics

 - All-regime solver: full scheme$$
\begin{array}{ll}
\frac{\partial \rho}{\partial t} & +\frac{\partial\left(\rho u_{x}\right)}{\partial x} \\
\frac{\partial \rho u_{x}}{\partial t} & +\frac{\partial\left(\rho u_{x}^{2}+P\right)}{\partial x}
\end{array}=0
$$

- Stratified compressible hydrodynamics

 - All-regime solver: full scheme$$
\begin{array}{llll}
\frac{\partial \rho}{\partial t} & +\rho \frac{\partial u_{x}}{\partial x} & +u_{x} \frac{\partial \rho}{\partial x} & =0 \\
\frac{\partial \rho u_{x}}{\partial t} & +\rho u_{x} \frac{\partial u_{x}}{\partial x}+\frac{\partial P}{\partial x} & +u_{x} \frac{\partial \rho u_{x}}{\partial x} & =0 \\
\frac{\partial \rho \mathscr{E}}{\partial t} & +\rho \mathscr{E} \frac{\partial u_{x}}{\partial x}+\frac{\partial P u_{x}}{\partial x} & +u_{x} \frac{\partial \rho \mathscr{E}}{\partial x} & =0
\end{array}
$$

- Stralified compressible hydrodynamics

 - All-regime solver: acouskic slep$$
\begin{array}{lll}
\frac{\partial \rho}{\partial t} & +\rho \frac{\partial u_{x}}{\partial x} & =0 \\
\frac{\partial \rho u_{x}}{\partial t} & +\rho u_{x} \frac{\partial u_{x}}{\partial x}+\frac{\partial P}{\partial x} & =0 \\
\frac{\partial \rho \mathscr{E}}{\partial t} & +\rho \mathscr{E} \frac{\partial u_{x}}{\partial x}+\frac{\partial P u_{x}}{\partial x} & =0
\end{array}
$$

- Stratified compressible hydrodynamics - All-regime solver: acoustic step

$$
\begin{array}{lll}
\frac{\partial \tau}{\partial t} & -\frac{\partial u_{x}}{\partial m} & =0 \\
\frac{\partial u_{x}}{\partial t} & +\frac{\partial P}{\partial m} & =0 \\
\frac{\partial \mathscr{E}}{\partial t} & +\frac{\partial P u_{x}}{\partial m} & =0
\end{array}
$$

- Stratified compressible hydrodynamics

 - All-regime solver: acoustic step$$
\begin{array}{ccc}
\frac{\partial \tau}{\partial t} & -\frac{\partial u_{x}}{\partial m} & =0 \\
\frac{\partial u_{x}}{\partial t} & +\frac{\partial \Pi}{\partial m} & =0 \\
\frac{\partial \mathscr{C}}{\partial t} & +\frac{\partial \Pi u_{x}}{\partial m} & =0 \\
\frac{\partial \Pi}{\partial t} & +a^{2} \frac{\partial u_{x}}{\partial m} & =0 \\
\rho
\end{array}
$$

$$
\Pi^{n+1-}=p\left(\tau^{n+1-}, \mathscr{E}^{n+1-}, u_{x}^{n+1-}\right)
$$

- Stratified compressible hydrodynamics

 - All-regime solver: Eransport step$$
\begin{array}{lll}
\frac{\partial \rho}{\partial t} & +u_{x} \frac{\partial \rho}{\partial x} & =0 \\
\frac{\partial \rho u_{x}}{\partial t} & +u_{x} \frac{\partial \rho u_{x}}{\partial x} & =0 \\
\frac{\partial \rho \mathscr{E}}{\partial t} & +u_{x} \frac{\partial \rho \mathscr{E}}{\partial x} & =0
\end{array}
$$

- Stratified compressible hydrodynamics - All-regime solver: transport step

$$
\begin{array}{lll}
\frac{\partial \rho}{\partial t} & +\frac{\partial \rho u_{x}}{\partial x}-\rho \frac{\partial u_{x}}{\partial x} & =0 \\
\frac{\partial \rho u_{x}}{\partial t} & +\frac{\partial \rho u_{x}^{2}}{\partial x}-\rho u_{x} \frac{\partial u_{x}}{\partial x} & =0 \\
\frac{\partial \rho \mathscr{E}}{\partial t} & +\frac{\partial \rho \mathscr{E} u_{x}}{\partial x}-\rho \mathscr{E} \frac{\partial u_{x}}{\partial x} & =0
\end{array}
$$

- Stratified compressible hydrodynamics - All-regime solver: transport skep

$$
\frac{\rho^{n+1}-\rho^{n+1-}}{\Delta t}+\frac{\left[\rho^{n+1-} U^{\star}\right]}{\Delta x}-\rho^{n+1-} \frac{\left[U^{\star}\right]}{\Delta x}=0
$$

$$
\frac{\left(\rho u_{x}\right)^{n+1}-\left(\rho u_{x}\right)^{n+1-}}{\Delta t}+\frac{\left[\left(\rho u_{x}\right)^{n+1-} U^{\star}\right]}{\Delta x}-\left(\rho u_{x}\right)^{n+1-} \frac{\left[U^{\star}\right]}{\Delta x}=0
$$

$$
\frac{(\rho \mathscr{E})^{n+1}-(\rho \mathscr{E})^{n+1-}}{\Delta t}+\frac{\left[(\rho \mathscr{E})^{n+1-} U^{\star}\right]}{\Delta x}-(\rho \mathscr{E})^{n+1}-\frac{\left[U^{\star}\right]}{\Delta x}=0
$$

- Stratified compressible hydrodynamics - All-regime solver: full scheme

$$
\frac{\rho^{n+1}-\rho^{n}}{\Delta t}+\frac{\left[\rho^{n+1-} U^{\star}\right]}{\Delta x}=0
$$

$$
\frac{\left(\rho u_{x}\right)^{n+1}-\left(\rho u_{x}\right)^{n}}{\Delta t}+\frac{\left[\left(\rho u_{x}\right)^{n+1-} U^{\star}+\Pi^{\star}\right]}{\Delta x}=0
$$

$$
\frac{(\rho \mathscr{E})^{n+1}-(\rho \mathscr{E})^{n}}{\Delta t}+\frac{\left[(\rho \mathscr{E})^{n+1}-U^{\star}+\Pi^{\star} U^{\star}\right]}{\Delta x}=0
$$

$$
U_{i+1 / 2}^{\star}=\frac{u_{x, i}+u_{x, i+1}}{2}-\frac{1}{2 a}\left(\Pi_{i+1}-\Pi_{i}\right)
$$

$$
\Pi_{i+1 / 2}^{\star}=\frac{\Pi_{i}+\Pi_{i+1}}{2}-\frac{a}{2}\left(u_{x, i+1}-u_{x, i}\right)
$$

- Stratified compressible hydrodynamics
- All-regime solver: full scheme
- Explicit/Explicit scheme
- Implicil/Explicit scheme
- Low Mach correction

$$
\begin{gathered}
U_{i+1 / 2}^{\star}=\frac{u_{x, i}+u_{x, i+1}}{2}-\frac{1}{2 a}\left(\Pi_{i+1}-\Pi_{i}\right) \\
\Pi_{i+1 / 2}^{\star}=\frac{\Pi_{i}+\Pi_{i+1}}{2}-\frac{a}{2}\left(u_{x, i+1}-u_{x, i}\right)
\end{gathered}
$$

- Stratified compressible hydrodynamics

 - All-regime solver: full scheme - conservative scheme: Sod test

- Stratified compressible hydrodynamics

 - All-regime solver: full scheme - Low Mach correction: Gresho vortex

- Stratified compressible hydrodynamics - All-regime solver with gravity
- hydrostatic balance at cell centre

$$
\frac{\left(\rho u_{x}\right)^{n+1}-\left(\rho u_{x}\right)^{n}}{\Delta t}+\frac{\left[\left(\rho u_{x}\right)^{n+1}-U^{\star}+\Pi^{\star}\right]}{\Delta x}=-\rho g
$$

if there is initially no velocity

$$
\begin{gathered}
\frac{\Pi_{i}+\Pi_{i+1}}{2}-\frac{\Pi_{i}+\Pi_{i-1}}{2}=-\rho_{i g} \Delta x \\
u_{x}^{n+1}=O(\Delta x), \quad \frac{\partial P}{\partial x}=-\rho g+O(\Delta x)
\end{gathered}
$$

- Stratified compressible hydrodynamics - All-regime solver with gravity
- hydrostatic balance at interface
$\frac{\left(\rho u_{x}\right)^{n+1}-\left(\rho u_{x}\right)^{n}}{\Delta t}+\frac{\left[\left(\rho u_{x}\right)^{n+1}-U^{\star}+\Pi^{\star}\right]}{\Delta x}=-\frac{1}{2}\left(\frac{\rho_{i}+\rho_{i+1}}{2}+\frac{\rho_{i}+\rho_{i-1}}{2}\right) g$
if there is initially no velocity
$\frac{\Pi_{i}+\Pi_{i+1}}{2}-\frac{\Pi_{i}+\Pi_{i-1}}{2}=-\frac{1}{2}\left(\frac{\rho_{i}+\rho_{i+1}}{2}+\frac{\rho_{i}+\rho_{i-1}}{2}\right) g \Delta x$
$\Pi_{i+1}-\Pi_{i}=\frac{\rho_{i}+\rho_{i+1}}{2} g \Delta x \quad \Pi_{i}-\Pi_{i-1}=\frac{\rho_{i-1}+\rho_{i}}{2} g \Delta x$

$$
u_{x}^{n+1}=0, \quad \frac{\partial P}{\partial x}=-\rho g
$$

- Stratified compressible hydrodynamics
- All-regime solver with gravity
- Convective simulation
- Low Mach correction
- Stratified compressible hydrodynamics
- All-regime solver with gravity
- Parallel HPC Implementation

Problem of portability and performance probability...

- Stralified compressible hydrodynamics
- All-regime solver with gravity
- Parallel HPC Implementation

Kokkos Library:

- C++ Library for perf. porkabiliky
- extracked from Trilinos (Sandia)
- backend: openMP, PEhreads, CUDA
- abstrackion of memory space and execulion space
- Strakified compressible hydrodynamics
- All-regime solver with gravily - Memory Layouk:

SOA:
Structures of Arrays

AOS:
Arrays of Structures

G
B
float
float
float

R
G
B
R
G
B

// Old matrix type:
// typedef View<double**, Device> my_matrix ;
// Change matrix type to an $8 x 8$ tiled layout. typedef View< double** ,

LayoutTileLeft<8,8>,
Device > my_matrix ;

- Stratified compressible hydrodynamics - All-regime solver with gravity - Kokkos kernel

```
struct InitView
{
    InitView(Kokkos::View<double*[3]> a)
        : m_a(a)
        {}
    KOKKOS_INLINE_FUNCTION
    void operator () (const int i) const
    {
        a(i, 0) = 1.0*i;
        a(i, 1) = 1.0*i*i;
        a(i, 2) = 1.0*i*i*i;
    }
    Kokkos::View<double*[3]> m_a;
};
```

```
```

int main (int argc, char* argv[])

```
```

int main (int argc, char* argv[])
{
{
Kokkos::initialize(argc, argv);
Kokkos::initialize(argc, argv);
Kokkos::View<double*[3]> view("View_name", 15);
Kokkos::View<double*[3]> view("View_name", 15);
Kokkos::parallel_for(15, InitView(view));
Kokkos::parallel_for(15, InitView(view));
Kokkos::finalize();
Kokkos::finalize();
}

```
```

}

```
```

- Stratified compressible hydrodynamics - All-regime solver with gravity - 2D diabatic convection

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\vec{\nabla}(\rho \vec{u}) & =0 \\
\frac{\partial \rho \vec{u}}{\partial t}+\vec{\nabla}(\rho \vec{u} \otimes \vec{u}+P) & =\rho \vec{g} \\
\frac{\partial \rho \mathscr{E}}{\partial t}+\vec{\nabla}(\vec{u}(\rho \mathscr{E}+P)) & =\rho c_{p} H(X, T) \\
\frac{\partial \rho X}{\partial t}+\vec{\nabla}(\rho X \vec{u}) & =\rho R(X, T)
\end{aligned}
$$

- Strakified compressible hydrodyn
me solver with gravily - 2D diabalic convection

- What is in common between:

- What is in common between:

Convective systems but not adiabatic, they are all subject to:

- Energy exchange (latent heat, thermal diffusion, radiative transfer)
and/or compositional source terms (chemical reactions, condensation/evaporation, compositional diffusion)

- What is adiabatic convection? - Thermal adiabatic case

$$
\begin{array}{ll}
\frac{\partial \ln \theta}{\partial t}+\vec{u} \vec{\nabla}(\ln \theta)=0 & \theta=T\left(P_{\text {ref }} / P\right)^{(\gamma-1) / \gamma} \\
P & P k_{b} T / \mu
\end{array}
$$

- What is adiabalic convection? - Thermal adiabalic case

$$
\begin{aligned}
& \quad \frac{\partial \ln \theta}{\partial t}+\vec{u} \vec{\nabla}(\ln \theta)=0 \quad \begin{array}{l}
\theta=T\left(P_{\mathrm{ref}} / P\right)^{(\gamma-1) / \gamma} \\
\text { - Unscable if: } \frac{\partial \ln \theta_{0}}{\partial z}<0
\end{array}
\end{aligned}
$$

- Schwarzschild criterion (1906) $\nabla_{T}-\nabla_{a d}>0, \quad \nabla_{T}=\frac{\partial \ln T_{0}}{\partial \ln P_{0}}$

$$
\frac{\partial T_{0}}{\partial z}<\frac{g}{C_{p}}
$$

- What is adiabatic convection?

- Thermo-compositional adiabatic case

$$
\begin{array}{rlrl}
\frac{\partial \ln \theta}{\partial t}+\vec{u} \vec{\nabla}(\ln \theta)=0 & \theta & =T\left(P_{\text {ref }} / P\right)^{(\gamma-1) / \gamma} \\
\frac{\partial X}{\partial t}+\vec{u} \vec{\nabla}(X)=0 & P=\rho k_{b} T / \mu(X)
\end{array}
$$

- What is adiabalic convection?
- Thermo-composilional adiabalic case $\frac{\partial \ln \theta}{\partial t}+\vec{u} \vec{\nabla}(\ln \theta)=0$
$\theta=T\left(P_{\mathrm{ref}} / P\right)^{(\gamma-1) / \gamma}$

$$
\frac{\partial X}{\partial t}+\vec{u} \vec{\nabla}(X)=0
$$

$$
P=\rho k_{b} T / \mu(X)
$$

- Unslable if: $\nabla_{T}-\nabla_{\mathrm{ad}}-\nabla_{\mu}>0$

$$
\nabla_{T}=\frac{\partial \ln T_{0}}{\partial \ln P_{0}}, \quad \nabla_{\mu}=\frac{\partial \ln \mu_{0}}{\partial \ln P_{0}}
$$

- Ledoux criterion (1947)
- What is adiabatic convection?
- Thermo-compositional diabalic case

$$
\begin{array}{rlrl}
\frac{\partial \ln \theta}{\partial t}+\vec{u} \vec{\nabla}(\ln \theta) & =\frac{H(X, T)}{T} & \theta & =T\left(P_{\text {ref }} / P\right)(\gamma-1) / \gamma \\
\frac{\partial X}{\partial t}+\vec{u} \vec{\nabla}(X) & =R(X, T) & P=\rho k_{b} T / \mu(X)
\end{array}
$$

- What is adiabatic convection?
- Thermo-compositional diabalic case

$$
\begin{array}{rlrl}
\frac{\partial \ln \theta}{\partial t}+\vec{u} \vec{\nabla}(\ln \theta) & =\frac{H(X, T)}{T} & \theta & =T\left(P_{\mathrm{ref}} / P\right)^{(\gamma-1) / \gamma} \\
\frac{\partial X}{\partial t}+\vec{u} \vec{\nabla}(X) & =R(X, T) & P=\rho k_{b} T / \mu(X)
\end{array}
$$

- Unstable if: $\nabla_{T}-\nabla_{a d}-\nabla_{\mu}>0$

or

$$
\left(\nabla_{T}-\nabla_{\mathrm{ad}}\right) \omega_{X}^{\prime}-\nabla_{\mu} \omega_{T}^{\prime}<0
$$

with $\quad \omega_{X}^{\prime}=R_{X}+R_{T}\left(T_{0} \partial \ln \mu_{0} / \partial X\right)$ and $\quad \omega_{T}^{\prime}=H_{T}+H_{X}\left(T_{0} \partial \ln \mu_{0} / \partial X\right)^{-1}$

- Thermohaline or fingering convection

with $\quad R=\kappa_{\mu} \Delta X \quad \omega_{X}^{\prime}=-k^{2} \kappa_{\mu} \quad\left(R_{T}=0\right)$
and $H=\kappa_{T} \Delta T \quad \omega_{T}^{\prime}=-k^{2} \kappa_{T} \quad\left(H_{X}=0\right)$

$$
\left(\nabla_{T}-\nabla_{\mathrm{ad}}\right) \kappa_{\mu}-\nabla_{\mu} \kappa_{T}>0
$$

and simulations from
Traxler et al. 2011, Brown et al. 2013 Garaud et al. 2016, Sengupta \& Garaud 2018

- Steam/liquid or moist convection

$$
\nabla_{T}-\nabla_{\mathrm{ad}} \frac{1+\frac{X_{\mathrm{ca}} L}{R_{d} T_{0}}}{1+\frac{X_{\mathrm{cec}} L^{2}}{c_{p} R_{\mathrm{v}} T_{0}^{2}}}>0
$$

Dry adiabat
Moist «pseudo-adiabat»
von Bezold 1893

- Steam/liquid or moist convection

$$
\left(\nabla_{T}-\nabla_{\mathrm{ad}}\right) \omega_{X}^{\prime}-\nabla_{\mu} \omega_{T}^{\prime}<0
$$

with $\quad R=R_{\text {cond }}(X, T) \quad$ and $\quad X=X_{\text {eq }}(P, T)$
and $H=-R_{\text {cond }} L / c_{p}$

$$
\nabla_{T}-\nabla_{\mathrm{ad}} \frac{1-\rho_{0} \frac{\partial X_{\text {eq }}}{\partial P} L}{1+\frac{\partial X_{\text {eq }}}{\partial T} \frac{L}{c_{p}}}>0
$$

Moist « pseudo-adiabat»
von Bezold 1893

- Steam/liquid or moist convection

 $\left(\nabla_{T}-\nabla_{\mathrm{ad}}\right) \omega_{X}^{\prime}-\nabla_{\mu} \omega_{T}^{\prime}<0$

with $R=R_{\text {cond }}(X, T)$ and $X=X_{\text {eq }}(P, T)$
and $H=-R_{\text {cond }} L / c_{p}$

$$
\nabla_{T}-\nabla_{\mathrm{ad}} \frac{1-\rho_{0} \frac{\partial X_{\mathrm{cq}}}{\partial P} L}{1+\frac{\partial X_{\mathrm{cq}}}{\partial T} \frac{L}{c_{p}}}>0
$$

Moist « pseudo-adiabat»
von Bezold 1893

- Thermo-compostional diabatic convection

Moist
Steam/liquid
Fingering
Thermohaline

with

$$
\omega_{X}^{\prime}=R_{X}+R_{T}\left(T_{0} \partial \ln \mu_{0} / \partial X\right)
$$

$$
\text { and } \quad \omega_{T}^{\prime}=H_{T}+H_{X}\left(T_{0} \partial \ln \mu_{0} / \partial X\right)^{-1}
$$

and probably many more...

- CO/CH4 radiative convection

$$
\left(\nabla_{T}-\nabla_{\mathrm{ad}}\right) \omega_{X}^{\prime}-\nabla_{\mu} \omega_{T}^{\prime}<0
$$

with $\quad R=-\left(X-X_{\text {eq }}\right) / \tau_{\text {chem }}$
and $H=4 \pi \kappa / c_{p}\left(J-\sigma T^{4}\right)$

Brown dwarfs and giant exoptanets

Moist convection

$\mathrm{CO} / \mathrm{CH} 4$ radiakive convection

- Generalisation of mixing length theory

$$
\frac{\partial \ln \theta}{\partial t}+\vec{u} \vec{\nabla}(\ln \theta)=\omega_{T}^{\prime} \frac{\delta T}{T_{0}}
$$

$$
\begin{array}{r}
\frac{\partial X}{\partial t}+\vec{u} \vec{\nabla}(X)=\omega_{X}^{\prime} \delta X \\
\delta X \partial \ln \mu_{0} / \partial X=\delta T / T_{0}
\end{array}
$$

- Generalisation of mixing length theory

$$
\begin{aligned}
\frac{\partial \ln \theta}{\partial t}+\vec{u} \vec{\nabla}(\ln \theta) & =\omega_{T}^{\prime} \frac{\delta T}{T_{0}} \\
\frac{\partial X}{\partial t}+\vec{u} \vec{\nabla}(X) & =\omega_{X}^{\prime} \delta X \\
\delta X \partial \ln \mu_{0} / \partial X & =\delta T / T_{0}
\end{aligned} \quad \frac{\partial \ln \theta^{\prime}}{\partial t}+\vec{u} \vec{\nabla}\left(\ln \theta^{\prime}\right)=0
$$

with $\ln \theta^{\prime}=\ln \theta-X \frac{\partial \ln \mu_{0}}{\partial X} \frac{\omega_{T}^{\prime}}{\omega_{X}^{\prime}}$

- Creneralisakion of mixing length theory

$$
\begin{aligned}
\frac{\partial \ln \theta}{\partial t}+\vec{u} \vec{\nabla}(\ln \theta) & =\omega_{T}^{\prime} \frac{\delta T}{T_{0}} \\
\frac{\partial X}{\partial t}+\vec{u} \vec{\nabla}(X) & =\omega_{X}^{\prime} \delta X \\
\delta X \partial \ln \mu_{0} / \partial X & =\delta T / T_{0}
\end{aligned} \quad \frac{\partial \ln \theta^{\prime}}{\partial t}+\vec{u} \vec{\nabla}\left(\ln \theta^{\prime}\right)=0
$$

$$
\text { with } \ln \theta^{\prime}=\ln \theta-X \frac{\partial \ln \mu_{0}}{\partial X} \frac{\omega_{T}^{\prime}}{\omega_{X}^{\prime}}
$$

$\ln \theta^{\prime}=\ln \theta-X L / c_{p} T_{0}$ for moist convection

- Generalisation of mixing length theory

Can define an adiabatic convective flux:

$$
F_{\mathrm{ad}}=\rho c_{p} w_{\mathrm{ad}} T_{0}\left(\nabla_{T}-\nabla_{\mathrm{ad}}\right)
$$

or

Can define a diabolic convective flux:

$$
F_{\mathrm{d}}=\rho c_{p} w_{\mathrm{d}} T_{0}\left(\nabla_{T}-\nabla_{\mathrm{ad}}-\nabla_{\mu} \omega_{T}^{\prime} / \omega_{X}^{\prime}\right)
$$

similar to mass/flux convection parametrizations used for moist convection (review: Arakawa \& Jung 2011)

- Bifurcation between adiabatic and diabatic convection
- Boiling crisis in steam/liquid convection

Nukiyama 1934

- Bifurcation between adiabatic and diabatic convection
- Boiling crisis in steam/liquid convection

Heater temperature above saturation

- Could provide a natural explanation of the boiling crisis?
- Bifurcation between adiabatic and diabatic convection
- L/T transition in brown-dwarf spectra?

Dupuy $\&$ Liu 2012

- Bifurcation between adiabatic and diabatic convection
- L/T transition in brown-dwarf ctra?

Surface temperature

A giank cooling crisis?
$W^{\prime \prime}(\mathrm{L}$

- Bifurcation between adiabatic and diabatic convection
- L/T transition in brown-dwarf spectra?

Surface temperature

- Bifurcalion bebween adiabalic and

 diabatic convection- Spatial bifurcation: thermohaline staircase

- Conclusions:
- Stratified all-regime compressible hydrodynamic solvers can be developed with efficient HPC support (MPI+Kokkos) to study these convective instabilities
- Thermohaline, fingering, moist, sleam/liquid, $\mathrm{CO} / \mathrm{CH} 4$ radiative convection all derive from this diabatic branch of convection
- Extension at high order, implicit acoustic waves and radiative transfer (Trilinos)

