An electromagnetic precursor to binary pulsar coalescence?

Benjamin Crinquand benjamin.crinquand@univ-grenoble-alpes.fr

Context

- ▶ Recent joint detection of EM and GW waves (Abbott et al. 2017)
 ⇒ Signature of a binary neutron star merger
- ► Young pulsars emit non-thermal high-energy radiation → Suggests an electromagnetic counterpart prior to the merger?
- Electromagnetic energy is transferred to particles, which then radiate away this energy into an observable signal
- ▶ MHD simulations cannot capture particle acceleration \rightarrow Need for kinetic simulations: particle-in-cell
- ► Goal: determine the lightcurve of the merger from first principles

Results

Numerical setup

- Simulation of the magnetospheric plasma in a simplified
 2D-axisymmetrical setup
- ▶ Magnetic and spin axes
 aligned → orbital motion ne glected
- Inspiral due to the emission of GW: the relative distance decreases as

Toroidal magnetic field in the parallel configuration

- ► Parallel spins: Dissipation even in the absence of relative motion between the pulsars in a midway current sheet
- ► Anti-parallel spins: Relative motion ⇒ Electromotive force ⇒ Pair creation between the stars

 $a(t) = a_0 (1 - 4t/\tau)^{1/4}$

Two configurations studied:
 parallel or anti-parallel spins

Conclusions

- ► After the merger begins, similar lightcurves for both configurations, the output signal is not strongly anisotropic
- ► Great increase in bolometric luminosity: the total radiated power increases by one to two orders of magnitude
- ► For a Crab-like pulsar: $\mathcal{P} \sim 10^{38}$ erg/s, to be compared to the merger event GW170817: $\mathcal{P}_{out} \sim 10^{46}$ erg/s \rightarrow Precursor probably to faint in γ or X-ray
- ► Hope for radio detection though, origin of Fast Radio Bursts?

Outlooks

- ► Asymetric simulations $(B_{0,up}/B_{0,down} = 4, \Omega_{up}/\Omega_{down} \sim 0.25)$: more realistic system
- ► 3D simulations with orbital motion would probably yield a more powerful outburst

UNIVERSITÉ Grenoble Alpes